">
In today\\\'s rapidly advancing era of automation, robotics control systems are evolving to meet the demand for smarter, faster, and more reliable performance. Among the many innovations driving this transformation is the use of MCP (Model-based Control Paradigms) combined with powerful simulation platforms like MATLAB. Together, they form the backbone of modern robotic design, testing, and deployment.
MCP, or Model-based Control Paradigms, refers to an approach where control algorithms are developed, tested, and optimized using mathematical models of robotic systems. Instead of relying solely on physical prototypes, engineers can simulate dynamics, predict behavior, and refine strategies in a virtual environment.
This paradigm significantly reduces design risks, saves cost, and accelerates development cycles.
MATLAB is widely recognized for its robust simulation, control design, and visualization capabilities. It provides a seamless platform to integrate MCP with robotic systems.
Key advantages include:
A typical MCP-enabled robotics workflow in MATLAB includes:
As robotics continues to expand into sectors like smart manufacturing, healthcare, and autonomous vehicles, MCP combined with MATLAB will be at the forefront of innovation. The ability to design, simulate, and implement highly reliable robotic controllers without excessive trial-and-error gives industries a decisive edge.
MCP-Enabled Robotics Control Systems with MATLAB are revolutionizing how robots are designed and controlled. By blending model-based design with MATLAB\\\'s simulation and deployment power, engineers can achieve higher efficiency, precision, and adaptability.
Whether you\\\'re a researcher, engineer, or PhD student, exploring MCP in MATLAB will open doors to cutting-edge advancements in robotics.
% Two-Joint Robot MPC Simulation
clear; close all; clc;
%% Robot / Model Parameters (Simplified Per-Joint Dynamics)
I1 = 0.05; % Inertia joint 1 [kg*m^2]
I2 = 0.03; % Inertia joint 2 [kg*m^2]
b1 = 0.01; % Viscous damping joint 1
b2 = 0.01; % Viscous damping joint 2
% State-space matrices for each joint
A1_c = [0 1; 0 -b1/I1];
B1_c = [0; 1/I1];
A2_c = [0 1; 0 -b2/I2];
B2_c = [0; 1/I2];
% Combined system matrices
A_c = blkdiag(A1_c, A2_c);
B_c = blkdiag(B1_c, B2_c);
%% Discretize Model
Ts = 0.05; % Sampling time [s]
sysc = ss(A_c, B_c, eye(4), zeros(4,2)); % Continuous-time state-space model
sysd = c2d(sysc, Ts); % Discrete-time state-space model
Ad = sysd.A;
Bd = sysd.B;
%% MPC Parameters
Np = 20; % Prediction horizon
nx = size(Ad,1); % Number of states (4: q1, qd1, q2, qd2)
nu = size(Bd,2); % Number of inputs (2: torques for joint 1, joint 2)
Qx = diag([100, 1, 100, 1]); % State weighting matrix
Ru = 0.01 * eye(nu); % Input weighting matrix
tau_max = 5; % Max torque [Nm]
tau_min = -tau_max; % Min torque [Nm]
u_max = tau_max * ones(nu,1);
u_min = tau_min * ones(nu,1);
q1_lim = [-pi/2, pi/2]; % Joint 1 angle limits [rad]
q2_lim = [-pi/2, pi/2]; % Joint 2 angle limits [rad]
%% Build Prediction Matrices Sx, Su
Sx = zeros(nx*Np, nx);
Su = zeros(nx*Np, nu*Np);
for i = 1:Np
Sx((i-1)*nx+1:i*nx, :) = Ad^i;
for j = 1:i
Su((i-1)*nx+1:i*nx, (j-1)*nu+1:j*nu) = Ad^(i-j) * Bd;
end
end
% Weighting matrices for prediction horizon
Qbar = kron(eye(Np), Qx);
Rbar = kron(eye(Np), Ru);
%% Reference Trajectory
Tsim = 10; % Simulation time [s]
Nsim = round(Tsim / Ts); % Number of simulation steps
t = (0:Nsim-1)\' * Ts; % Time vector
q1_ref_traj = 0.6 * sin(0.5 * t); % Reference trajectory for joint 1
q2_ref_traj = 0.5 * sin(0.7 * t + 0.5); % Reference trajectory for joint 2
qd1_ref_traj = [0; diff(q1_ref_traj)/Ts]; % Velocity for joint 1
qd2_ref_traj = [0; diff(q2_ref_traj)/Ts]; % Velocity for joint 2
x_ref_traj = [q1_ref_traj, qd1_ref_traj, q2_ref_traj, qd2_ref_traj]; % State reference
%% Initial Conditions
x = [0; 0; 0; 0]; % Initial state: [q1; qd1; q2; qd2]
Xlog = zeros(Nsim, nx); % Log states
Ulog = zeros(Nsim, nu); % Log inputs
%% Check for quadprog Availability
have_quadprog = license(\'test\',\'optimization_toolbox\') && exist(\'quadprog\',\'file\');
if ~have_quadprog
fprintf(\'quadprog not available. MPC QP will fallback to LQR-based tracking. \');
[K_lqr, ~, ~] = dlqr(Ad, Bd, Qx, Ru);
K_lqr = -K_lqr; % LQR gain
end
%% Precompute QP Hessian
H = Su\' * Qbar * Su + Rbar;
H = (H + H\') / 2; % Ensure symmetry
%% Simulation Loop
fprintf(\'Starting simulation (%d steps)... \', Nsim);
for k = 1:Nsim
% Prepare reference trajectory for prediction horizon
idx_end = min(k + Np - 1, Nsim);
horizon_len = idx_end - k + 1;
xref_stack = zeros(nx * Np, 1);
% Stack reference states
for j = 1:horizon_len
xref = x_ref_traj(k + j - 1, :)\';
xref_stack((j-1)*nx+1:j*nx) = xref;
end
if horizon_len < Np
last_ref = xref_stack((horizon_len-1)*nx+1:horizon_len*nx);
for j = horizon_len+1:Np
xref_stack((j-1)*nx+1:j*nx) = last_ref;
end
end
% Compute control input
if have_quadprog
% QP cost: f = -Su\'*Qbar*(xref_stack - Sx*x)
f = -Su\' * Qbar * (xref_stack - Sx * x);
% Constraints: u_min <= u <= u_max
lb = kron(ones(Np,1), u_min);
ub = kron(ones(Np,1), u_max);
% Solve QP (min 0.5*u\'*H*u + f\'*u)
u_opt = quadprog(H, f, [], [], [], [], lb, ub, [], optimoptions(\'quadprog\', \'Display\', \'off\'));
% Apply first control input
u = u_opt(1:nu);
else
% LQR fallback: u = K_lqr * (x - x_ref)
u = K_lqr * (x - x_ref_traj(k, :)\');
end
% Update state
x = Ad * x + Bd * u;
% Log state and input
Xlog(k, :) = x\';
Ulog(k, :) = u\';
% Enforce joint limits (optional, for realism)
x(1) = max(q1_lim(1), min(q1_lim(2), x(1))); % q1
x(3) = max(q2_lim(1), min(q2_lim(2), x(3))); % q2
end
%% Plot Results
figure;
subplot(2,1,1);
plot(t, Xlog(:,1), \'b-\', \'LineWidth\', 1.5, \'DisplayName\', \'q1\');
hold on;
plot(t, x_ref_traj(:,1), \'r--\', \'LineWidth\', 1.5, \'DisplayName\', \'q1_ref\');
plot(t, Xlog(:,3), \'g-\', \'LineWidth\', 1.5, \'DisplayName\', \'q2\');
plot(t, x_ref_traj(:,3), \'m--\', \'LineWidth\', 1.5, \'DisplayName\', \'q2_ref\');
title(\'Joint Positions\');
xlabel(\'Time (s)\'); ylabel(\'Angle (rad)\');
legend; grid on;
subplot(2,1,2);
plot(t, Ulog(:,1), \'b-\', \'LineWidth\', 1.5, \'DisplayName\', \'u1\');
hold on;
plot(t, Ulog(:,2), \'g-\', \'LineWidth\', 1.5, \'DisplayName\', \'u2\');
title(\'Control Inputs\');
xlabel(\'Time (s)\'); ylabel(\'Torque (Nm)\');
legend; grid on;