Classify Image Using GoogLeNet

This example shows how to classify an image using the pretrained deep convolutional neural network GoogLeNet.

GoogLeNet has been trained on over a million images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich feature representations for a wide range of images. The network takes an image as input, and then outputs a label for the object in the image together with the probabilities for each of the object categories.

Load Pretrained Network

Load the pretrained GoogLeNet network. This step requires the Deep Learning Toolbox™ Model for GoogLeNet Network support package. If you do not have the required support packages installed, then the software provides a download link.

You can also choose to load a different pretrained network for image classification. To try a different pretrained network, open this example in MATLAB® and select a different network. For example, you can try squeezenet, a network that is even faster than googlenet. You can run this example with other pretrained networks. For a list of all available networks, see Load Pretrained Networks.

net = googlenet;

The image that you want to classify must have the same size as the input size of the network. For GoogLeNet, the first element of the Layers property of the network is the image input layer. The network input size is the InputSize property of the image input layer.

inputSize = net.Layers(1).InputSize
inputSize = 1×3

   224   224     3

The final element of the Layers property is the classification output layer. The ClassNames property of this layer contains the names of the classes learned by the network. View 10 random class names out of the total of 1000.

classNames = net.Layers(end).ClassNames;
numClasses = numel(classNames);
disp (classNames (randperm (numClasses, 10)))
    'papillon'
    'eggnog'
    'jackfruit'
    'castle'
    'sleeping bag'
    'redshank'
    'Band Aid'
    'wok'
    'seat belt'
    'orange'

Read and Resize Image

Read and show the image that you want to classify.

I = imread('peppers.png');
figure
imshow(I)

Display the size of the image. The image is 384-by-512 pixels and has three color channels (RGB).

size(I)
years = 1 × 3

   384   512     3

Resize the image to the input size of the network by using imresize. This resizing slightly changes the aspect ratio of the image.

I = imresize(I,inputSize(1:2));
figure
imshow(I)

Depending on your application, you might want to resize the image in a different way. For example, you can crop the top left corner of the image by using I(1:inputSize(1),1:inputSize(2),:). If you have Image Processing Toolbox™, then you can use the imcrop function.

Classify Image

Classify the image and calculate the class probabilities using classify. The network correctly classifies the image as a bell pepper. A network for classification is trained to output a single label for each input image, even when the image contains multiple objects.

[label,scores] = classify(net,I);
label
label = categorical
     bell pepper 

Display the image with the predicted label and the predicted probability of the image having that label.

figure
imshow(I)
title(string(label) + ", " + num2str(100*scores(classNames == label),3) + "%");

Display Top Predictions

Display the top five predicted labels and their associated probabilities as a histogram. Because the network classifies images into so many object categories, and many categories are similar, it is common to consider the top-five accuracy when evaluating networks. The network classifies the image as a bell pepper with a high probability.

[~,idx] = sort(scores,'descend');
idx = idx(5:-1:1);
classNamesTop = net.Layers(end).ClassNames(idx);
scoresTop = scores(idx);

figure
barh (scoresTop)
xlim ([0 1])
title('Top 5 Predictions')
xlabel('Probability')
yticklabels(classNamesTop)

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.

Machine Learning in MATLAB

Train Classification Models in Classification Learner App

Train Regression Models in Regression Learner App

Distribution Plots

Explore the Random Number Generation UI

Design of Experiments

Machine Learning Models

Logistic regression

Logistic regression create generalized linear regression model - MATLAB fitglm 2

Support Vector Machines for Binary Classification

Support Vector Machines for Binary Classification 2

Support Vector Machines for Binary Classification 3

Support Vector Machines for Binary Classification 4

Support Vector Machines for Binary Classification 5

Assess Neural Network Classifier Performance

Naive Bayes Classification

ClassificationTree class

Discriminant Analysis Classification

Ensemble classifier

ClassificationTree class 2

Train Generalized Additive Model for Binary Classification

Train Generalized Additive Model for Binary Classification 2

Classification Using Nearest Neighbors

Classification Using Nearest Neighbors 2

Classification Using Nearest Neighbors 3

Classification Using Nearest Neighbors 4

Classification Using Nearest Neighbors 5

Linear Regression

Linear Regression 2

Linear Regression 3

Linear Regression 4

Nonlinear Regression

Nonlinear Regression 2

Visualizing Multivariate Data

Generalized Linear Models

Generalized Linear Models 2

RegressionTree class

RegressionTree class 2

Neural networks

Gaussian Process Regression Models

Gaussian Process Regression Models 2

Understanding Support Vector Machine Regression

Understanding Support Vector Machine Regression 2

RegressionEnsemble



matlab assignment help


matlab assignment help