This example shows how to classify images from a webcam in real time using the pretrained deep convolutional neural network GoogLeNet.
Use MATLAB®, a simple webcam, and a deep neural network to identify objects in your surroundings. This example uses GoogLeNet, a pretrained deep convolutional neural network (CNN or ConvNet) that has been trained on over a million images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil, and many animals). You can download GoogLeNet and use MATLAB to continuously process the camera images in real time.
GoogLeNet has learned rich feature representations for a wide range of images. It takes the image as input and provides a label for the object in the image and the probabilities for each of the object categories. You can experiment with objects in your surroundings to see how accurately GoogLeNet classifies images. To learn more about the network's object classification, you can show the scores for the top five classes in real time, instead of just the final class decision.
Connect to the camera and load a pretrained GoogLeNet network. You can use any pretrained network at this step. The example requires MATLAB Support Package for USB Webcams, and Deep Learning Toolbox™ Model for GoogLeNet Network. If you do not have the required support packages installed, then the software provides a download link.
camera = webcam; net = googlenet;
If you want to run the example again, first run the command clear camera
where camera
is the connection to the webcam. Otherwise, you see an error because you cannot create another connection to the same webcam.
To classify an image, you must resize it to the input size of the network. Get the first two elements of the InputSize
property of the image input layer of the network. The image input layer is the first layer of the network.
inputSize = net.Layers(1).InputSize(1:2)
inputSize = 224 224
Display the image from the camera with the predicted label and its probability. You must resize the image to the input size of the network before calling classify
.
figure im = snapshot(camera); image(im) im = imresize(im,inputSize); [label,score] = classify(net,im); title({char(label),num2str(max(score),2)});
To classify images from the camera continuously, include the previous steps inside a loop. Run the loop while the figure is open. To stop the live prediction, simply close the figure. Use drawnow
at the end of each iteration to update the figure.
h = figure; while ishandle(h) im = snapshot(camera); image(im) im = imresize(im,inputSize); [label,score] = classify(net,im); title({char(label), num2str(max(score),2)}); drawnow end
The predicted classes can change rapidly. Therefore, it can be helpful to display the top predictions together. You can display the top five predictions and their probabilities by plotting the classes with the highest prediction scores.
Classify a snapshot from the camera. Display the image from the camera with the predicted label and its probability. Display a histogram of the probabilities of the top five predictions by using the score
output of the classify
function.
Create the figure window. First, resize the window to have twice the width, and create two subplots.
h = figure; h.Position(3) = 2*h.Position(3); ax1 = subplot(1,2,1); ax2 = subplot(1,2,2);
In the left subplot, display the image and classification together.
im = snapshot(camera); image(ax1,im) im = imresize(im,inputSize); [label,score] = classify(net,im); title(ax1,{char(label),num2str(max(score),2)});
Select the top five predictions by selecting the classes with the highest scores.
[~,idx] = sort(score,'descend'); idx = idx(5:-1:1); classes = net.Layers(end).Classes; classNamesTop = string(classes(idx)); scoreTop = score(idx);
Display the top five predictions as a histogram.
barh (ax2, scoreTop) xlim (ax2, [0 1]) title(ax2,'Top 5') xlabel(ax2,'Probability') yticklabels(ax2,classNamesTop) ax2.YAxisLocation = 'right';
To classify images from the camera continuously and display the top predictions, include the previous steps inside a loop. Run the loop while the figure is open. To stop the live prediction, simply close the figure. Use drawnow
at the end of each iteration to update the figure.
Create the figure window. First resize the window, to have twice the width, and create two subplots. To prevent the axes from resizing, set PositionConstraint
property to 'innerposition'
.
h = figure; h.Position(3) = 2*h.Position(3); ax1 = subplot(1,2,1); ax2 = subplot(1,2,2); ax2.PositionConstraint = 'innerposition' ;
Continuously display and classify images together with a histogram of the top five predictions.
while ishandle(h) % Display and classify the image im = snapshot(camera); image(ax1,im) im = imresize(im,inputSize); [label,score] = classify(net,im); title(ax1,{char(label),num2str(max(score),2)}); % Select the top five predictions [~,idx] = sort(score,'descend'); idx = idx(5:-1:1); scoreTop = score(idx); classNamesTop = string(classes(idx)); % Plot the histogram barh (ax2, scoreTop) title(ax2,'Top 5') xlabel(ax2,'Probability') xlim (ax2, [0 1]) yticklabels(ax2,classNamesTop) ax2.YAxisLocation = 'right'; drawnow end
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.
Desktop Basics - MATLAB & Simulink
Array Indexing - MATLAB & Simulink
Workspace Variables - MATLAB & Simulink
Text and Characters - MATLAB & Simulink
Calling Functions - MATLAB & Simulink
2-D and 3-D Plots - MATLAB & Simulink
Programming and Scripts - MATLAB & Simulink
Help and Documentation - MATLAB & Simulink
Creating, Concatenating, and Expanding Matrices - MATLAB & Simulink
Removing Rows or Columns from a Matrix
Reshaping and Rearranging Arrays
Add Title and Axis Labels to Chart
Change Color Scheme Using a Colormap
How Surface Plot Data Relates to a Colormap
How Image Data Relates to a Colormap
Time-Domain Response Data and Plots
Time-Domain Responses of Discrete-Time Model
Time-Domain Responses of MIMO Model
Time-Domain Responses of Multiple Models
Introduction: PID Controller Design
Introduction: Root Locus Controller Design
Introduction: Frequency Domain Methods for Controller Design
DC Motor Speed: PID Controller Design
DC Motor Position: PID Controller Design
Cruise Control: PID Controller Design
Suspension: Root Locus Controller Design
Aircraft Pitch: Root Locus Controller Design
Inverted Pendulum: Root Locus Controller Design
Get Started with Deep Network Designer
Create Simple Image Classification Network Using Deep Network Designer
Build Networks with Deep Network Designer
Classify Image Using GoogLeNet
Classify Webcam Images Using Deep Learning
Transfer Learning with Deep Network Designer
Train Deep Learning Network to Classify New Images
Deep Learning Processor Customization and IP Generation
Prototype Deep Learning Networks on FPGA
Deep Learning Processor Architecture
Deep Learning INT8 Quantization
Quantization of Deep Neural Networks
Custom Processor Configuration Workflow
Estimate Performance of Deep Learning Network by Using Custom Processor Configuration
Preprocess Images for Deep Learning
Preprocess Volumes for Deep Learning
Transfer Learning Using AlexNet
Time Series Forecasting Using Deep Learning
Create Simple Sequence Classification Network Using Deep Network Designer
Classify Image Using Pretrained Network
Train Classification Models in Classification Learner App
Train Regression Models in Regression Learner App
Explore the Random Number Generation UI
Logistic regression create generalized linear regression model - MATLAB fitglm 2
Support Vector Machines for Binary Classification
Support Vector Machines for Binary Classification 2
Support Vector Machines for Binary Classification 3
Support Vector Machines for Binary Classification 4
Support Vector Machines for Binary Classification 5
Assess Neural Network Classifier Performance
Discriminant Analysis Classification
Train Generalized Additive Model for Binary Classification
Train Generalized Additive Model for Binary Classification 2
Classification Using Nearest Neighbors
Classification Using Nearest Neighbors 2
Classification Using Nearest Neighbors 3
Classification Using Nearest Neighbors 4
Classification Using Nearest Neighbors 5
Gaussian Process Regression Models
Gaussian Process Regression Models 2
Understanding Support Vector Machine Regression
Extract Voices from Music Signal
Align Signals with Different Start Times
Find a Signal in a Measurement
Extract Features of a Clock Signal
Filtering Data With Signal Processing Toolbox Software
Find Periodicity Using Frequency Analysis
Find and Track Ridges Using Reassigned Spectrogram
Classify ECG Signals Using Long Short-Term Memory Networks
Waveform Segmentation Using Deep Learning
Label Signal Attributes, Regions of Interest, and Points
Introduction to Streaming Signal Processing in MATLAB
Filter Frames of a Noisy Sine Wave Signal in MATLAB
Filter Frames of a Noisy Sine Wave Signal in Simulink
Lowpass Filter Design in MATLAB
Tunable Lowpass Filtering of Noisy Input in Simulink
Signal Processing Acceleration Through Code Generation
Signal Visualization and Measurements in MATLAB
Estimate the Power Spectrum in MATLAB
Design of Decimators and Interpolators
Multirate Filtering in MATLAB and Simulink