scatter

Scatter plot

Syntax

scatter(x,y)
scatter(x,y,sz)
scatter(x,y,sz,c)
scatter(___,'filled')
scatter(___,mkr)
scatter(___,Name,Value)
scatter(ax,___)
s = scatter(___)
 

Description

example

scatter(x,y) creates a scatter plot with circles at the locations specified by the vectors x and y. This type of graph is also known as a bubble plot.

example

scatter(x,y,sz) specifies the circle sizes. To plot each circle with equal size, specify sz as a scalar. To plot each circle with a different size, specify sz as a vector with length equal to the length of x and y.

example

scatter(x,y,sz,c) specifies the circle colors. To plot all circles with the same color, specify c as a color name or an RGB triplet. To use varying color, specify c as a vector or a three-column matrix of RGB triplets.

example

scatter(___,'filled') fills in the circles. Use the 'filled' option with any of the input argument combinations in the previous syntaxes.

example

scatter(___,mkr) specifies the marker type.

example

scatter(___,Name,Value) modifies the scatter chart using one or more name-value pair arguments. For example, 'LineWidth',2 sets the marker outline width to 2 points.

example

scatter(ax,___) plots into the axes specified by ax instead of into the current axes. The option ax can precede any of the input argument combinations in the previous syntaxes.

example

example

s = scatter(___) returns the Scatter object. Use s to make future modifications to the scatter chart after it is created.

Examples

Create x as 200 equally spaced values between 0 and 3π. Create y as cosine values with random noise. Then, create a scatter plot.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);  
scatter(x,y)

 
 

Create a scatter plot using circles with different sizes. Specify the size in points squared

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
sz = linspace(1,100,200);
scatter(x,y,sz)

Corresponding elements in xy, and sz determine the location and size of each circle. To plot all circles with the equal area, specify sz as a numeric scalar.

 
 

Create a scatter plot and vary the circle color.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
c = linspace(1,10,length(x));
scatter(x,y,[],c)

Corresponding elements in xy, and c determine the location and color of each circle. The scatter function maps the elements in c to colors in the current colormap.

 
 

Create a scatter plot and fill in the markers. scatter fills each marker using the color of the marker edge.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
sz = 25;
c = linspace(1,10,length(x));
scatter(x,y,sz,c,'filled')

 
 

Create vectors x and y as sine and cosine values with random noise. Then, create a scatter plot and use diamond markers with an area of 140 points squared.

theta = linspace(0,2*pi,150);
x = sin(theta) + 0.75*rand(1,150);
y = cos(theta) + 0.75*rand(1,150);  
sz = 140;
scatter(x,y,sz,'d')

 
 

Create vectors x and y as sine and cosine values with random noise. Create a scatter plot and set the marker edge color, marker face color, and line width.

theta = linspace(0,2*pi,300);
x = sin(theta) + 0.75*rand(1,300);
y = cos(theta) + 0.75*rand(1,300);  
sz = 40;
scatter(x,y,sz,'MarkerEdgeColor',[0 .5 .5],...
              'MarkerFaceColor',[0 .7 .7],...
              'LineWidth',1.5)

 
 

Starting in R2019b, you can display a tiling of plots using the tiledlayout and nexttile functions. Call the tiledlayout function to create a 2-by-1 tiled chart layout. Call the nexttile function to create the axes objects ax1 and ax2. Plot scattered data into each axes. In the bottom scatter plot, specify diamond filled diamond markers.

x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
tiledlayout(2,1)

% Top plot
ax1 = nexttile;
scatter(ax1,x,y)

% Bottom plot
ax2 = nexttile;
scatter(ax2,x,y,'filled','d')

 
 

Create a scatter plot and return the scatter series object, s.

theta = linspace(0,1,500);
x = exp(theta).*sin(100*theta);
y = exp(theta).*cos(100*theta);
s = scatter(x,y);

Use s to query and set properties of the scatter series after it has been created. Set the line width to 0.6 point. Set the marker edge color to blue. Set the marker face color using an RGB triplet color.

s.LineWidth = 0.6;
s.MarkerEdgeColor = 'b';
s.MarkerFaceColor = [0 0.5 0.5];

 
 

Input Arguments

x values, specified as a vector. x and y must be vectors of equal length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

y values, specified as a vector. x and y must be vectors of equal length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

Marker area in points squared, specified in one of these forms:

  • Numeric scalar — Plot all markers with equal size.

  • Row or column vector — Use different sizes for each marker. Corresponding elements in xy, and sz determine the location and area of each marker. The length of sz must equal the length of x and y.

  • [] — Use the default area of 36 points squared.

 

The units for the marker area is points squared.

Example: 50

Example: [36 25 25 17 46]

Marker color, specified in one of these forms:

  • RGB triplet or color name — Plot all markers with the same color.

  • Three column matrix of RGB triplets — Use different colors for each marker. Each row of the matrix specifies an RGB triplet color for the corresponding marker. The number of rows must equal the length of x and y.

  • Vector — Use different colors for each marker and linearly map values in c to the colors in the current colormap. The length of c must equal the length of x and y. To change the colormap for the axes, use the colormap function.

    If you have three points in the scatter plot and want the colors to be indices into the colormap, specify c as a three-element column vector.

 

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

 

Example: 'k'

Example: [1 2 3 4]

Marker type, specified as one of the values listed in this table.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

 

Option to fill the interior of the markers, specified as 'filled'. Use this option with markers that have a face, for example, 'o' or 'square'. Markers that do not have a face and contain only edges do not draw ('+''*''.', and 'x').

The 'filled' option sets the MarkerFaceColor property of the Scatter object to 'flat' and the MarkerEdgeColor property to 'none', so the marker faces draw, but the edges do not.

Target axes, specified as an Axes object, a PolarAxes object, or a GeographicAxes object. If you do not specify the axes and if the current axes are Cartesian axes, then the scatter function uses the current axes. To plot into polar axes, specify the PolarAxes object as the first input argument or use the polarscatter function. To plot into geographic axes, specify the GeographicAxes object as the first input argument or use the geoscatter function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'MarkerFaceColor','red' sets the marker face color to red.

The Scatter object properties listed here are only a subset. For a complete list, see Scatter Properties.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.

Machine Learning in MATLAB

Train Classification Models in Classification Learner App

Train Regression Models in Regression Learner App

Distribution Plots

Explore the Random Number Generation UI

Design of Experiments

Machine Learning Models

Logistic regression

Logistic regression create generalized linear regression model - MATLAB fitglm 2

Support Vector Machines for Binary Classification

Support Vector Machines for Binary Classification 2

Support Vector Machines for Binary Classification 3

Support Vector Machines for Binary Classification 4

Support Vector Machines for Binary Classification 5

Assess Neural Network Classifier Performance

Naive Bayes Classification

ClassificationTree class

Discriminant Analysis Classification

Ensemble classifier

ClassificationTree class 2

Train Generalized Additive Model for Binary Classification

Train Generalized Additive Model for Binary Classification 2

Classification Using Nearest Neighbors

Classification Using Nearest Neighbors 2

Classification Using Nearest Neighbors 3

Classification Using Nearest Neighbors 4

Classification Using Nearest Neighbors 5

Linear Regression

Linear Regression 2

Linear Regression 3

Linear Regression 4

Nonlinear Regression

Nonlinear Regression 2

Visualizing Multivariate Data

Generalized Linear Models

Generalized Linear Models 2

RegressionTree class

RegressionTree class 2

Neural networks

Gaussian Process Regression Models

Gaussian Process Regression Models 2

Understanding Support Vector Machine Regression

Understanding Support Vector Machine Regression 2

RegressionEnsemble



matlab assignment help


matlab assignment help