A matrix is a collection of numbers ordered in the manner of rows and columns: this is a highly convenient way to store lots of data. One example of such data may be the scores of several students (rows) on several exams (columns). Usually these numbers are enclosed inside square brackets in a matrix:
Adding and Subtracting Matrices
Matrix addition and subtraction operate on matrices element-by-element. The two input matrices should be of same dimensions. The result is the new matrix of the same dimensions where each element of new matrix is the sum or difference of each corresponding input element. For example, consider combination of portfolios of different quantities for same stocks
For illustration lets take an example: shares of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R and S.
Portfolios_PQ = [100 200
500 400
300 150];
Portfolios_RS = [175 125
200 200
100 500];
NewPortfolios = Portfolios_PQ + Portfolios_RS
Multiplying Matrices
Matrix multiplication does not operate on matrices element-by-element. It operates following the rules of linear algebra. For multiplying matrices user should remember this key rule: the inner dimensions should be the same. That is, if the first matrix is m-by-3, the second should be 3-by-n. The resulting matrix is m-by-n.
Matrix multiplication also is not commutative; that is, it is dependent of order. A*B does not equal B*A. The dimension rule shows this property. If A is a matrix having order 1-by-3 and B is a matrix having order 3-by-1 , A*B yields a scalar (1-by-1) matrix but B*A yields a 3-by-3 matrix.
To show, assume that there are two portfolios of the same three stocks mentioned above but with different quantities.
Portfolios = [100 200
500 400
300 150];
Multiplying the 5-by-3 matrix o week's closing prices by the 3-by-2 matrix of portfolios yields a 5-by-2 matrix showing each day's closing value for both portfolios.
PortfolioValues = WeekClosePr * Portfolios
Dividing Matrices
Matrix division is useful mainly for solving equations, and especially for solving simultaneous linear equations . For example, to solve for X in A*X = B.
MATLAB simplifies the process by providing two matrix division symbols, left and right (\ and /). In general,
X = A\B used to solve for X in A*X = B and
X = B/A used to solve for X in X*A = B.
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.