input= xlsread('Input'); output = xlsread('Output'); bias = ones(1,3)*0.0005; %bias values a=-1; b=1; rng('default') V= a+(b-a)*rand(6,5); %weights between the input(6 nodes) and hidden(5 nodes) layers rng('default') W = a+(b-a)*rand(5,1); %weights between the hidden(5 nodes) and output(1 node) layers transposed_input = input'; %inputs d = output'; %target output %initialization of del[W] and del[V] del_W1=0; del_W2=0; del_W3=0; del_W4=0; del_W5=0; del_V1=0; del_V2=0; del_V3=0; del_V4=0; del_V5=0; del_V6=0; del_V7=0; del_V8=0; del_V9=0; del_V10=0; del_V11=0; del_V12=0; del_V13=0; del_V14=0; del_V15=0; del_V16=0; del_V17=0; del_V18=0; del_V19=0; del_V20=0; del_V21=0; del_V22=0; del_V23=0; del_V24=0; del_V25=0; del_V26=0; del_V27=0; del_V28=0; del_V29=0; del_V30=0; for epoch=1:6000 %number of iterations alpha=0.1; %learning rate Mu=0.1; %Momentum Constant N=80; %Number of training cases for k=1:N %Feed-Forward Network starts %Output to input neurons OI(1,k)=1./(1+exp(-(transposed_input(1,k)+bias(1,1)))); OI(2,k)=1./(1+exp(-(transposed_input(2,k)+bias(1,1)))); OI(3,k)=1./(1+exp(-(transposed_input(3,k)+bias(1,1)))); OI(4,k)=1./(1+exp(-(transposed_input(4,k)+bias(1,1)))); OI(5,k)=1./(1+exp(-(transposed_input(5,k)+bias(1,1)))); OI(6,k)=1./(1+exp(-(transposed_input(6,k)+bias(1,1)))); %Input to hidden neurons IH1(1,k)= (OI(1,k)*V(1,1))+(OI(2,k)*V(2,1))+ (OI(3,k)*V(3,1))+ (OI(4,k)*V(4,1))+ (OI(5,k)*V(5,1))+(OI(6,k)*V(6,1))+bias(1,2); IH2(1,k)= (OI(1,k)*V(1,2))+(OI(2,k)*V(2,2))+ (OI(3,k)*V(3,2))+ (OI(4,k)*V(4,2))+ (OI(5,k)*V(5,2))+(OI(6,k)*V(6,2))+bias(1,2); IH3(1,k)= (OI(1,k)*V(1,3))+(OI(2,k)*V(2,3))+ (OI(3,k)*V(3,3))+ (OI(4,k)*V(4,3))+ (OI(5,k)*V(5,3))+(OI(6,k)*V(6,3))+bias(1,2); IH4(1,k)= (OI(1,k)*V(1,4))+(OI(2,k)*V(2,4))+ (OI(3,k)*V(3,4))+ (OI(4,k)*V(4,4))+ (OI(5,k)*V(5,4))+(OI(6,k)*V(6,4))+bias(1,2); IH5(1,k)= (OI(1,k)*V(1,5))+(OI(2,k)*V(2,5))+ (OI(3,k)*V(3,5))+ (OI(4,k)*V(4,5))+ (OI(5,k)*V(5,5))+(OI(6,k)*V(6,5))+bias(1,2); %Output to hidden neurons OH1(1,k) = (exp(IH1(1,k)+bias(1,2)) - exp(-(IH1(1,k)+bias(1,2))))./(exp(IH1(1,k)+bias(1,2)) + exp(-(IH1(1,k)+bias(1,2)))); OH2(1,k) = (exp(IH2(1,k)+bias(1,2)) - exp(-(IH2(1,k)+bias(1,2))))./(exp(IH2(1,k)+bias(1,2)) + exp(-(IH2(1,k)+bias(1,2)))); OH3(1,k) = (exp(IH3(1,k)+bias(1,2)) - exp(-(IH3(1,k)+bias(1,2))))./(exp(IH3(1,k)+bias(1,2)) + exp(-(IH3(1,k)+bias(1,2)))); OH4(1,k) = (exp(IH4(1,k)+bias(1,2)) - exp(-(IH4(1,k)+bias(1,2))))./(exp(IH4(1,k)+bias(1,2)) + exp(-(IH4(1,k)+bias(1,2)))); OH5(1,k) = (exp(IH5(1,k)+bias(1,2)) - exp(-(IH5(1,k)+bias(1,2))))./(exp(IH5(1,k)+bias(1,2)) + exp(-(IH5(1,k)+bias(1,2)))); %Input to Output neuron IO(1,k)=OH1(1,k)*W(1,1)+OH2(1,k)*W(2,1)+OH3(1,k)*W(3,1)+OH4(1,k)*W(4,1)+OH5(1,k)*W(5,1)+bias(1,3); %Output to Output neuron Out(1,k)=IO(1,k)+bias(1,3); %forward step calculation corresponding to each training case of a batch run terminates here %BackPropagation of [V] and [W] starts %Finding Mean Squared Error(E) error(1,k)=d(1,k)-Out(1,k); diff_Out(1,k)=[error(1,k).^2]; E= sum(diff_Out(1,k))./(2*N); end while (E >= 0.0004) %convergence criteria for p=1:N delta(1,p)=Out(1,p)*(1-Out(1,p))*error(1,p); del=sum(delta(1,p)); %summation of Output to hidden neurons for 'k' training cases OHS1=sum(OH1(1,p)); OHS2=sum(OH2(1,p)); OHS3=sum(OH3(1,p)); OHS4=sum(OH4(1,p)); OHS5=sum(OH5(1,p)); %summation of Output to input neurons for 'k' training cases OI1=sum(OI(1,p)); OI2=sum(OI(2,p)); OI3=sum(OI(3,p)); OI4=sum(OI(4,p)); OI5=sum(OI(5,p)); OI6=sum(OI(6,p)); end delta2_1=OHS1*(1-OHS1)*W(1,1)*del; delta2_2=OHS2*(1-OHS2)*W(2,1)*del; delta2_3=OHS3*(1-OHS3)*W(3,1)*del; delta2_4=OHS4*(1-OHS4)*W(4,1)*del; delta2_5=OHS5*(1-OHS5)*W(5,1)*del; %delta[W] del_W1=-alpha*OHS1*del+Mu*del_W1; del_W2=-alpha*OHS2*del+Mu*del_W2; del_W3=-alpha*OHS3*del+Mu*del_W3; del_W4=-alpha*OHS4*del+Mu*del_W4; del_W5=-alpha*OHS5*del+Mu*del_W5; %delta[V] del_V1=-alpha*OI1*delta2_1+Mu*del_V1; del_V2=-alpha*OI2*delta2_1+Mu*del_V2; del_V3=-alpha*OI3*delta2_1+Mu*del_V3; del_V4=-alpha*OI4*delta2_1+Mu*del_V4; del_V5=-alpha*OI5*delta2_1+Mu*del_V5; del_V6=-alpha*OI6*delta2_1+Mu*del_V6; del_V7=-alpha*OI1*delta2_2+Mu*del_V7; del_V8=-alpha*OI2*delta2_2+Mu*del_V8; del_V9=-alpha*OI3*delta2_2+Mu*del_V9; del_V10=-alpha*OI4*delta2_2+Mu*del_V10; del_V11=-alpha*OI5*delta2_2+Mu*del_V11; del_V12=-alpha*OI6*delta2_2+Mu*del_V12; del_V13=-alpha*OI1*delta2_3+Mu*del_V13; del_V14=-alpha*OI2*delta2_3+Mu*del_V14; del_V15=-alpha*OI3*delta2_3+Mu*del_V15; del_V16=-alpha*OI4*delta2_3+Mu*del_V16; del_V17=-alpha*OI5*delta2_3+Mu*del_V17; del_V18=-alpha*OI6*delta2_3+Mu*del_V18; del_V19=-alpha*OI1*delta2_4+Mu*del_V19; del_V20=-alpha*OI2*delta2_4+Mu*del_V20; del_V21=-alpha*OI3*delta2_4+Mu*del_V21; del_V22=-alpha*OI4*delta2_4+Mu*del_V22; del_V23=-alpha*OI5*delta2_4+Mu*del_V23; del_V24=-alpha*OI6*delta2_4+Mu*del_V24; del_V25=-alpha*OI1*delta2_5+Mu*del_V25; del_V26=-alpha*OI2*delta2_5+Mu*del_V26; del_V27=-alpha*OI3*delta2_5+Mu*del_V27; del_V28=-alpha*OI4*delta2_5+Mu*del_V28; del_V29=-alpha*OI5*delta2_5+Mu*del_V29; del_V30=-alpha*OI6*delta2_5+Mu*del_V30; end %updated [W] and [V] matrix W(1,1)=W(1,1)+del_W1; W(2,1)=W(2,1)+del_W2; W(3,1)=W(3,1)+del_W3; W(4,1)=W(4,1)+del_W4; W(5,1)=W(5,1)+del_W5; V(1,1)= V(1,1)+del_V1; V(2,1)= V(2,1)+del_V2; V(3,1)= V(3,1)+del_V3; V(4,1)= V(4,1)+del_V4; V(5,1)= V(5,1)+del_V5; V(6,1)= V(6,1)+del_V6; V(1,2)= V(1,2)+del_V7; V(2,2)= V(2,2)+del_V8; V(3,2)= V(3,2)+del_V9; V(4,2)= V(4,2)+del_V10; V(5,2)= V(5,2)+del_V11; V(6,2)= V(6,2)+del_V12; V(1,3)= V(1,3)+del_V13; V(2,3)= V(2,3)+del_V14; V(3,3)= V(3,3)+del_V15; V(4,3)= V(4,3)+del_V16; V(5,3)= V(5,3)+del_V17; V(6,3)= V(6,3)+del_V18; V(1,4)= V(1,4)+del_V19; V(2,4)= V(2,4)+del_V20; V(3,4)= V(3,4)+del_V21; V(4,4)= V(4,4)+del_V22; V(5,4)= V(5,4)+del_V23; V(6,4)= V(6,4)+del_V24; V(1,5)= V(1,5)+del_V25; V(2,5)= V(2,5)+del_V26; V(3,5)= V(3,5)+del_V27; V(4,5)= V(4,5)+del_V28; V(5,5)= V(5,5)+del_V29; V(6,5)= V(6,5)+del_V30; end
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.