bright_hill asked . 2021-05-14

Code not running and showing busy

Dear programmers
 
I have written a piece of code. Please check after providing convergence criteria with while loop the code is not running and only showing as busy. Please help.
 
input= xlsread('Input');



output = xlsread('Output');

bias = ones(1,3)*0.0005;      %bias values 

a=-1;
b=1;

rng('default')
V= a+(b-a)*rand(6,5);          %weights between the input(6 nodes) and hidden(5 nodes) layers
rng('default')
W = a+(b-a)*rand(5,1);         %weights between the hidden(5 nodes) and output(1 node) layers

transposed_input = input';     %inputs
d = output';                   %target output

                %initialization of del[W] and del[V]

del_W1=0;
del_W2=0;
del_W3=0;
del_W4=0;
del_W5=0;


del_V1=0;
del_V2=0;
del_V3=0;
del_V4=0;
del_V5=0;
del_V6=0;

del_V7=0;
del_V8=0;
del_V9=0;
del_V10=0;
del_V11=0;
del_V12=0;

del_V13=0;
del_V14=0;
del_V15=0;
del_V16=0;
del_V17=0;
del_V18=0;

del_V19=0;
del_V20=0;
del_V21=0;
del_V22=0;
del_V23=0;
del_V24=0;

del_V25=0;
del_V26=0;
del_V27=0;
del_V28=0;
del_V29=0;
del_V30=0;

for epoch=1:6000      %number of iterations

alpha=0.1;            %learning rate

Mu=0.1;               %Momentum Constant 


N=80;                 %Number of training cases





for k=1:N
    
    %Feed-Forward Network starts
    
    %Output to input neurons                                                          
    
    OI(1,k)=1./(1+exp(-(transposed_input(1,k)+bias(1,1))));
    OI(2,k)=1./(1+exp(-(transposed_input(2,k)+bias(1,1))));
    OI(3,k)=1./(1+exp(-(transposed_input(3,k)+bias(1,1))));
    OI(4,k)=1./(1+exp(-(transposed_input(4,k)+bias(1,1))));
    OI(5,k)=1./(1+exp(-(transposed_input(5,k)+bias(1,1))));
    OI(6,k)=1./(1+exp(-(transposed_input(6,k)+bias(1,1))));
    
     %Input to hidden neurons   
    
    IH1(1,k)= (OI(1,k)*V(1,1))+(OI(2,k)*V(2,1))+ (OI(3,k)*V(3,1))+ (OI(4,k)*V(4,1))+ (OI(5,k)*V(5,1))+(OI(6,k)*V(6,1))+bias(1,2);
    IH2(1,k)= (OI(1,k)*V(1,2))+(OI(2,k)*V(2,2))+ (OI(3,k)*V(3,2))+ (OI(4,k)*V(4,2))+ (OI(5,k)*V(5,2))+(OI(6,k)*V(6,2))+bias(1,2);
    IH3(1,k)= (OI(1,k)*V(1,3))+(OI(2,k)*V(2,3))+ (OI(3,k)*V(3,3))+ (OI(4,k)*V(4,3))+ (OI(5,k)*V(5,3))+(OI(6,k)*V(6,3))+bias(1,2);
    IH4(1,k)= (OI(1,k)*V(1,4))+(OI(2,k)*V(2,4))+ (OI(3,k)*V(3,4))+ (OI(4,k)*V(4,4))+ (OI(5,k)*V(5,4))+(OI(6,k)*V(6,4))+bias(1,2);
    IH5(1,k)= (OI(1,k)*V(1,5))+(OI(2,k)*V(2,5))+ (OI(3,k)*V(3,5))+ (OI(4,k)*V(4,5))+ (OI(5,k)*V(5,5))+(OI(6,k)*V(6,5))+bias(1,2);
    
    %Output to hidden neurons 

    OH1(1,k) = (exp(IH1(1,k)+bias(1,2)) - exp(-(IH1(1,k)+bias(1,2))))./(exp(IH1(1,k)+bias(1,2)) + exp(-(IH1(1,k)+bias(1,2))));
    OH2(1,k) = (exp(IH2(1,k)+bias(1,2)) - exp(-(IH2(1,k)+bias(1,2))))./(exp(IH2(1,k)+bias(1,2)) + exp(-(IH2(1,k)+bias(1,2))));
    OH3(1,k) = (exp(IH3(1,k)+bias(1,2)) - exp(-(IH3(1,k)+bias(1,2))))./(exp(IH3(1,k)+bias(1,2)) + exp(-(IH3(1,k)+bias(1,2))));
    OH4(1,k) = (exp(IH4(1,k)+bias(1,2)) - exp(-(IH4(1,k)+bias(1,2))))./(exp(IH4(1,k)+bias(1,2)) + exp(-(IH4(1,k)+bias(1,2))));
    OH5(1,k) = (exp(IH5(1,k)+bias(1,2)) - exp(-(IH5(1,k)+bias(1,2))))./(exp(IH5(1,k)+bias(1,2)) + exp(-(IH5(1,k)+bias(1,2))));

    %Input to Output neuron 
    
    IO(1,k)=OH1(1,k)*W(1,1)+OH2(1,k)*W(2,1)+OH3(1,k)*W(3,1)+OH4(1,k)*W(4,1)+OH5(1,k)*W(5,1)+bias(1,3);

    %Output to Output neuron

    Out(1,k)=IO(1,k)+bias(1,3);

   %forward step calculation corresponding to each training case of a batch run terminates here
    

   %BackPropagation of [V] and [W] starts
    %Finding Mean Squared Error(E)

    error(1,k)=d(1,k)-Out(1,k);
    diff_Out(1,k)=[error(1,k).^2];
    E= sum(diff_Out(1,k))./(2*N); 

  end

    while (E >= 0.0004)          %convergence criteria
	
    for p=1:N 
   
    delta(1,p)=Out(1,p)*(1-Out(1,p))*error(1,p);
    del=sum(delta(1,p));

                                 %summation of Output to hidden neurons for 'k' training cases
    OHS1=sum(OH1(1,p));
    OHS2=sum(OH2(1,p));  
    OHS3=sum(OH3(1,p));  
    OHS4=sum(OH4(1,p));  
    OHS5=sum(OH5(1,p)); 
         
    
                                          %summation of Output to input neurons for 'k' training cases
    
    OI1=sum(OI(1,p));
    OI2=sum(OI(2,p));
    OI3=sum(OI(3,p));
    OI4=sum(OI(4,p));
    OI5=sum(OI(5,p));
    OI6=sum(OI(6,p));
    
     end      


    delta2_1=OHS1*(1-OHS1)*W(1,1)*del;
    delta2_2=OHS2*(1-OHS2)*W(2,1)*del;
    delta2_3=OHS3*(1-OHS3)*W(3,1)*del;         
    delta2_4=OHS4*(1-OHS4)*W(4,1)*del;
    delta2_5=OHS5*(1-OHS5)*W(5,1)*del;
    
    

                                                     %delta[W] 

    del_W1=-alpha*OHS1*del+Mu*del_W1;
    
    del_W2=-alpha*OHS2*del+Mu*del_W2;
    
       
    del_W3=-alpha*OHS3*del+Mu*del_W3;
    
        
    del_W4=-alpha*OHS4*del+Mu*del_W4;
   
        
    del_W5=-alpha*OHS5*del+Mu*del_W5;
                                              
                                              %delta[V]

    del_V1=-alpha*OI1*delta2_1+Mu*del_V1;
    del_V2=-alpha*OI2*delta2_1+Mu*del_V2;
    del_V3=-alpha*OI3*delta2_1+Mu*del_V3;
    del_V4=-alpha*OI4*delta2_1+Mu*del_V4;
    del_V5=-alpha*OI5*delta2_1+Mu*del_V5;
    del_V6=-alpha*OI6*delta2_1+Mu*del_V6;

    
    
    del_V7=-alpha*OI1*delta2_2+Mu*del_V7;
    del_V8=-alpha*OI2*delta2_2+Mu*del_V8;
    del_V9=-alpha*OI3*delta2_2+Mu*del_V9;
    del_V10=-alpha*OI4*delta2_2+Mu*del_V10;
    del_V11=-alpha*OI5*delta2_2+Mu*del_V11;
    del_V12=-alpha*OI6*delta2_2+Mu*del_V12;
    
    

    del_V13=-alpha*OI1*delta2_3+Mu*del_V13;
    del_V14=-alpha*OI2*delta2_3+Mu*del_V14;
    del_V15=-alpha*OI3*delta2_3+Mu*del_V15;
    del_V16=-alpha*OI4*delta2_3+Mu*del_V16;
    del_V17=-alpha*OI5*delta2_3+Mu*del_V17;
    del_V18=-alpha*OI6*delta2_3+Mu*del_V18;
    
    

    del_V19=-alpha*OI1*delta2_4+Mu*del_V19;
    del_V20=-alpha*OI2*delta2_4+Mu*del_V20;
    del_V21=-alpha*OI3*delta2_4+Mu*del_V21;
    del_V22=-alpha*OI4*delta2_4+Mu*del_V22;
    del_V23=-alpha*OI5*delta2_4+Mu*del_V23;
    del_V24=-alpha*OI6*delta2_4+Mu*del_V24;
    
   

    del_V25=-alpha*OI1*delta2_5+Mu*del_V25;
    del_V26=-alpha*OI2*delta2_5+Mu*del_V26;
    del_V27=-alpha*OI3*delta2_5+Mu*del_V27;
    del_V28=-alpha*OI4*delta2_5+Mu*del_V28;
    del_V29=-alpha*OI5*delta2_5+Mu*del_V29;
    del_V30=-alpha*OI6*delta2_5+Mu*del_V30;
 
      
     
             end
        
 

    
   %updated [W] and [V] matrix

    W(1,1)=W(1,1)+del_W1;
    W(2,1)=W(2,1)+del_W2;
    W(3,1)=W(3,1)+del_W3;
    W(4,1)=W(4,1)+del_W4;
    W(5,1)=W(5,1)+del_W5;

    V(1,1)= V(1,1)+del_V1;
    V(2,1)= V(2,1)+del_V2;
    V(3,1)= V(3,1)+del_V3;
    V(4,1)= V(4,1)+del_V4;
    V(5,1)= V(5,1)+del_V5;
    V(6,1)= V(6,1)+del_V6;

    V(1,2)= V(1,2)+del_V7;
    V(2,2)= V(2,2)+del_V8;
    V(3,2)= V(3,2)+del_V9;
    V(4,2)= V(4,2)+del_V10;
    V(5,2)= V(5,2)+del_V11;
    V(6,2)= V(6,2)+del_V12;

    V(1,3)= V(1,3)+del_V13;
    V(2,3)= V(2,3)+del_V14;
    V(3,3)= V(3,3)+del_V15;
    V(4,3)= V(4,3)+del_V16;
    V(5,3)= V(5,3)+del_V17;
    V(6,3)= V(6,3)+del_V18;


    V(1,4)= V(1,4)+del_V19;
    V(2,4)= V(2,4)+del_V20;
    V(3,4)= V(3,4)+del_V21;
    V(4,4)= V(4,4)+del_V22;
    V(5,4)= V(5,4)+del_V23;
    V(6,4)= V(6,4)+del_V24;



    V(1,5)= V(1,5)+del_V25;
    V(2,5)= V(2,5)+del_V26;
    V(3,5)= V(3,5)+del_V27;
    V(4,5)= V(4,5)+del_V28;
    V(5,5)= V(5,5)+del_V29;
    V(6,5)= V(6,5)+del_V30;
end

deep learning , matlab , simulink

Expert Answer

John Michell answered . 2024-12-20 18:43:23

Hi ,
 
From the code I see you are using first for loop inside the main for loop for updating the value of E. And the while loop condition is based on E only. So, you are not updating the variable on which the while loop is dependent inside the while loop, the problem it will create is let’s say the value of E from first for loop is >= 0.0004, then the while loop will not terminate because its value is not changing at all in that loop or any subsequent loop.
I think there is something missing in the implementation about updating E within the while loop. You may check again what are equation mathematically for writing the backpropagation and the termination condition.


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.