% Solve an Input-Output Fitting problem with a Neural Network % Script generated by Neural Fitting app % Created 13-Sep-2017 20:47:36 % % This script assumes these variables are defined: % % Input_train - input data. % Target_train - target data. x = Input_train; t = Target_train; % Choose a Training Function % For a list of all training functions type: help nntrain % 'trainlm' is usually fastest. % 'trainbr' takes longer but may be better for challenging problems. % 'trainscg' uses less memory. Suitable in low memory situations. trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation. % Create a Fitting Network hiddenLayerSize = 23; net = fitnet(hiddenLayerSize,trainFcn); % Choose Input and Output Pre/Post-Processing Functions % For a list of all processing functions type: help nnprocess net.input.processFcns = {'removeconstantrows','mapminmax'}; net.output.processFcns = {'removeconstantrows','mapminmax'}; % Setup Division of Data for Training, Validation, Testing % For a list of all data division functions type: help nndivide net.divideFcn = 'dividerand'; % Divide data randomly net.divideMode = 'sample'; % Divide up every sample net.divideParam.trainRatio = 80/100; net.divideParam.valRatio = 10/100; net.divideParam.testRatio = 10/100; % Choose a Performance Function % For a list of all performance functions type: help nnperformance net.performFcn = 'mse'; % Mean Squared Error % Choose Plot Functions % For a list of all plot functions type: help nnplot net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 'plotregression', 'plotfit'}; % Train the Network [net,tr] = train(net,x,t); % Test the Network y = net(x); e = gsubtract(t,y); performance = perform(net,t,y) % Recalculate Training, Validation and Test Performance trainTargets = t .* tr.trainMask{1}; valTargets = t .* tr.valMask{1}; testTargets = t .* tr.testMask{1}; trainPerformance = perform(net,trainTargets,y) valPerformance = perform(net,valTargets,y) testPerformance = perform(net,testTargets,y) % View the Network view(net) % Plots % Uncomment these lines to enable various plots. %figure, plotperform(tr) %figure, plottrainstate(tr) %figure, ploterrhist(e) %figure, plotregression(t,y) %figure, plotfit(net,x,t) end
trainFcn = 'trainlm'; hiddenLayerSize = 23; numberhiddenlayers=2;%more hidden layers net = fitnet([hiddenLayerSize numberhiddenlayers],trainFcn); net.trainParam.epochs=2000;% more epochs view(net)
with your code:
% Solve an Input-Output Fitting problem with a Neural Network % Script generated by Neural Fitting app % Created 13-Sep-2017 20:47:36 % % This script assumes these variables are defined: % % Input_train - input data. % Target_train - target data. x = Input_train; t = Target_train; % Choose a Training Function % For a list of all training functions type: help nntrain % 'trainlm' is usually fastest. % 'trainbr' takes longer but may be better for challenging problems. % 'trainscg' uses less memory. Suitable in low memory situations. trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation. % Create a Fitting Network hiddenLayerSize = 23; numberhiddenlayers=2; %more hidden layers net = fitnet([hiddenLayerSize numberhiddenlayers],trainFcn); net.trainParam.epochs=2000; %more epochs % Choose Input and Output Pre/Post-Processing Functions % For a list of all processing functions type: help nnprocess net.input.processFcns = {'removeconstantrows','mapminmax'}; net.output.processFcns = {'removeconstantrows','mapminmax'}; % Setup Division of Data for Training, Validation, Testing % For a list of all data division functions type: help nndivide net.divideFcn = 'dividerand'; % Divide data randomly net.divideMode = 'sample'; % Divide up every sample net.divideParam.trainRatio = 80/100; net.divideParam.valRatio = 10/100; net.divideParam.testRatio = 10/100; % Choose a Performance Function % For a list of all performance functions type: help nnperformance net.performFcn = 'mse'; % Mean Squared Error % Choose Plot Functions % For a list of all plot functions type: help nnplot net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 'plotregression', 'plotfit'}; % Train the Network [net,tr] = train(net,x,t); % Test the Network y = net(x); e = gsubtract(t,y); performance = perform(net,t,y) % Recalculate Training, Validation and Test Performance trainTargets = t .* tr.trainMask{1}; valTargets = t .* tr.valMask{1}; testTargets = t .* tr.testMask{1}; trainPerformance = perform(net,trainTargets,y) valPerformance = perform(net,valTargets,y) testPerformance = perform(net,testTargets,y) % View the Network view(net) % Plots % Uncomment these lines to enable various plots. %figure, plotperform(tr) %figure, plottrainstate(tr) %figure, ploterrhist(e) %figure, plotregression(t,y) %figure, plotfit(net,x,t) end
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.