Raza_ali_087 asked . 2021-06-18

How to change input values for weight classfication layer. Follow

I am using weigth classfication fucntion which given as example in MATALAB documentaion.
But whenI use it in my network it gives error "Error using 'backwardLoss' in Layer weightedClassificationLayer. The function threw an error and could not be executed". I think the error is due to input value but i am not sure where to change these valuse. The weighted classification function works well according to input valuse assigned in example.
the code I am using for weighted classification function
 
 
%%%%%%
classdef weightedClassificationLayer < nnet.layer.ClassificationLayer
        properties
        % Row vector of weights corresponding to the classes in the
        % training data.
        ClassWeights
    end
    methods
        function layer = weightedClassificationLayer(classWeights, name)
            % layer = weightedClassificationLayer(classWeights) creates a
            % weighted cross entropy loss layer. classWeights is a row
            % vector of weights corresponding to the classes in the order
            % that they appear in the training data.
            %
            % layer = weightedClassificationLayer(classWeights, name)
            % additionally specifies the layer name.
            
            % Set class weights.
            layer.ClassWeights = classWeights;
            
            % Set layer name.
            if nargin == 2
                layer.Name = name;
            end
            
            % Set layer description
            layer.Description = 'Weighted cross entropy';
        end
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the weighted cross
            % entropy loss between the predictions Y and the training
            % targets T.
            
            N = size(Y,4);
            Y = squeeze(Y);
            T = squeeze(T);
            W = layer.ClassWeights;
    
            loss = -sum(W*(T.*log(Y)))/N;
        end
        
        function dLdY = backwardLoss(layer, Y, T)
            % dLdX = backwardLoss(layer, Y, T) returns the derivatives of
            % the weighted cross entropy loss with respect to the
            % predictions Y.
            
            [~,~,K,N] = size(Y);
            Y = squeeze(Y);
            T = squeeze(T);
            W = layer.ClassWeights;
            dLdY = -(W'.*T./Y)/N;
            dLdY = reshape(dLdY,[1 1 K N]);
           
        end
    end
end

deep learning , neural networks , matlab , simulink

Expert Answer

Neeta Dsouza answered . 2024-11-11 13:28:21

This is a way to initialize 'classWeights'
 
 
classWeights = 1./countcats(YTrain);
classWeights = classWeights'/mean(classWeights);

and you can use it here:

Network = [
    imageInputLayer([256 256 3],"Name","imageinput")
    convolution2dLayer([3 3],2,"Name","conv","Padding","same")
    reluLayer("Name","relu")
    softmaxLayer("Name","softmax")
    weightedClassificationLayer(classWeights)
     ];

I think this should solve the problem.


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.