>> deepNetworkDesigner >> SHIVANCLASSIFY net = SeriesNetwork with properties: Layers: [25×1 nnet.cnn.layer.Layer] InputNames: {'data'} OutputNames: {'output'} Error using trainNetwork (line 170) The training images are of size 227x227x1 but the input layer expects images of size 227x227x3. Error in SHIVANCLASSIFY (line 36) net = trainNetwork(augimdsTrain,layers_1,options)
net=alexnet imds = imageDatastore('lung dataset-Labeled', ... 'IncludeSubfolders',true, 'LabelSource','foldernames', ... % this for labeling by folder names 'FileExtensions','.dcm','ReadFcn',@readDicomDatastoreImage); % this a function [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7); augmenter = imageDataAugmenter( ... 'RandRotation',[-20,20], ... 'RandXReflection',1,... 'RandYReflection',1,... 'RandXTranslation',[-3 3], ... 'RandYTranslation',[-3 3]); %augimdsTrain = augmentedImageDatastore([224 224],imdsTrain,'DataAugmentation',augmenter); %augimdsValidation = augmentedImageDatastore([224 224],imdsValidation,'DataAugmentation',augmenter); augimdsTrain = augmentedImageDatastore([227 227],imdsTrain); augimdsValidation = augmentedImageDatastore([227 227],imdsValidation); options = trainingOptions('rmsprop', ... 'MiniBatchSize',10, ... 'MaxEpochs',20, ... 'InitialLearnRate',1e-3, ... 'Shuffle','every-epoch', ... 'ValidationData',augimdsValidation, ... 'ValidationFrequency',3, ... 'Verbose',false, ... 'Plots','training-progress'); net = trainNetwork(augimdsTrain,layers_1,options) [YPred, probs] = classify(net,augimdsValidation); accuracy = mean(YPred ==imdsValidation.Labels) figure cm=confusionchart (imdsValidation.Labels, YPred);
clear all; close all; clc; imds = imageDatastore('lung dataset-Labeled', ... 'IncludeSubfolders',true, 'LabelSource','foldernames', ... % this for labeling by folder names 'FileExtensions','.dcm','ReadFcn',@readDicomDatastoreImage); % this a function [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7); net = alexnet(); % analyzeNetwork(lgraph) numClasses = numel(categories(imdsTrain.Labels)); % number of classes = number of folders imageSize = [227 227]; % you can use here the original dataset size global GinputSize GinputSize = imageSize; lgraph = layerGraph(net.Layers); lgraph = removeLayers(lgraph, 'fc8'); lgraph = removeLayers(lgraph, 'prob'); lgraph = removeLayers(lgraph, 'output'); % create and add layers inputLayer = imageInputLayer([imageSize 1], 'Name', net.Layers(1).Name,... 'DataAugmentation', net.Layers(1).DataAugmentation, ... 'Normalization', net.Layers(1).Normalization); lgraph = replaceLayer(lgraph,net.Layers(1).Name,inputLayer); newConv1_Weights = net.Layers(2).Weights; newConv1_Weights = mean(newConv1_Weights(:,:,1:3,:), 3); % taking the mean of kernal channels newConv1 = convolution2dLayer(net.Layers(2).FilterSize(1), net.Layers(2).NumFilters,... 'Name', net.Layers(2).Name,... 'NumChannels', inputLayer.InputSize(3),... 'Stride', net.Layers(2).Stride,... 'DilationFactor', net.Layers(2).DilationFactor,... 'Padding', net.Layers(2).PaddingSize,... 'Weights', newConv1_Weights,...BiasLearnRateFactor 'Bias', net.Layers(2).Bias,... 'BiasLearnRateFactor', net.Layers(2).BiasLearnRateFactor); lgraph = replaceLayer(lgraph,net.Layers(2).Name,newConv1); lgraph = addLayers(lgraph, fullyConnectedLayer(numClasses,'Name', 'fc2')); lgraph = addLayers(lgraph, softmaxLayer('Name', 'softmax')); lgraph = addLayers(lgraph, classificationLayer('Name','output')); lgraph = connectLayers(lgraph, 'drop7', 'fc2'); lgraph = connectLayers(lgraph, 'fc2', 'softmax'); lgraph = connectLayers(lgraph, 'softmax', 'output'); % ------------------------------------------------------------------------- augmenter = imageDataAugmenter( ... 'RandRotation',[-20,20], ... 'RandXReflection',1,... 'RandYReflection',1,... 'RandXTranslation',[-3 3], ... 'RandYTranslation',[-3 3]); %augimdsTrain = augmentedImageDatastore([224 224],imdsTrain,'DataAugmentation',augmenter); %augimdsValidation = augmentedImageDatastore([224 224],imdsValidation,'DataAugmentation',augmenter); augimdsTrain = augmentedImageDatastore(imageSize,imdsTrain); augimdsValidation = augmentedImageDatastore(imageSize,imdsValidation); options = trainingOptions('rmsprop', ... 'MiniBatchSize',10, ... 'MaxEpochs',20, ... 'InitialLearnRate',1e-3, ... 'Shuffle','every-epoch', ... 'ValidationData',augimdsValidation, ... 'ValidationFrequency',3, ... 'Verbose',false, ... 'Plots','training-progress'); net = trainNetwork(augimdsTrain,lgraph,options) [YPred, probs] = classify(net,augimdsValidation); accuracy = mean(YPred ==imdsValidation.Labels) figure cm=confusionchart (imdsValidation.Labels, YPred);
you also need to update the readDicomDatastoreImage function to resize every image you read with specified size:
function I = readDicomDatastoreImage(filename) onState = warning('off', 'backtrace'); c = onCleanup(@() warning(onState)); I = dicomread(filename); global GinputSize; I = imresize(I,GinputSize(1:2));
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.