Using weights from OL in CL training; how should the weight vector(s)/cell matrices be formatted when used as input in train() ?
close all clear all % format long T = simplenar_dataset; [I,N] = size(T); d = 5; FD = 1:d; H = 10; % open net number one, input for closed net number one and closed net number two neto1 = narnet( FD, H ); neto1.divideFcn = 'divideblock'; [ Xo1, Xoi1, Aoi1, To1] = preparets( neto1, {}, {}, T ); to = cell2mat( To1 ); % zto = zscore(to,1); varto1 = mean(var(to',1)); % minmaxto = minmax([ to ; zto ]); rng( 'default' ) [neto1,tro,Yo1,Eo1,Aof1,Xof1] = train( neto1, Xo1, To1, Xoi1, Aoi1 ); [Yo1,Xof1,Aof] = neto1( Xo1, Xoi1, Aoi1 ); Eo1 = gsubtract( To1, Yo1 ); NMSEo1 = mse( Eo1 ) /varto1; yo1 = cell2mat( Yo1 ); netc1 = closeloop(neto1); EWo1=getwb(neto1); EWc1=getwb(netc1); isequal( EWo1, EWc1); % 1 netc1.divideFcn = 'divideblock'; [ Xc1, Xci1, Aci1, Tc1, EWc1 ] = preparets( netc1, {}, {}, T, EWo1 ); % 1.232667933023756e-08 isequal( EWo1, cell2mat(EWc1)); % 1 if EWo1 is included in preparets, 0 if EWo1 is NOT included in preparets figure(1) plot(1:length(EWo1),EWo1,1:length(cell2mat(EWc1)),cell2mat(EWc1)) isequal( Tc1, To1); tc = to; [netc1,troc1,Yc1,Ec1,Acf1,Xcf1] = train( netc1, Xc1, Tc1, Xci1, Aci1, EWc1); % Here, in the training I would like to insert EWc1 to continute working weights from the % preparets which is nine lines up. However, when adding EWc1 as the last % input parameter I get the following error: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Error using nntraining.setup (line 17) % Error weights EW{1,1 contains negative values. % Error in network/train (line 292) % [net,rawData,tr,err] = nntraining.setup(net,net.trainFcn,X,Xi,Ai,T,EW,~isGPUArray); %Error in question160516 (line 50) % [netc1,troc1,Yc1,Ec1,Acf1,Xcf1] = train( netc1, Xc1, Tc1, Xci1, Aci1, EWc1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % [netc1,troc1,Yc1,Ec1,Acf1,Xcf1] = train( netc1, Xc1, Tc1, Xci1, Aci1, EWc1); EWc1=getwb(netc1); disp('Weights IW') % Here I try to show the content of each weight set o_iw=neto1.IW c_iw=netc1.IW disp('Weights LW') o_lw=neto1.LW c_lw=netc1.LW disp('Weights b') o_b=neto1.b c_b=netc1.b isequal( EWo1, EWc1); % 0 figure(2) plot(1:length(EWo1),EWo1,1:length(EWc1),EWc1) [Yc1,Xcf1,Acf1] = netc1( Xc1, Xci1, Aci1 ); Ec1 = gsubtract( Tc1, Yc1 ); yc = cell2mat( Yc1 ); NMSEc = mse(Ec1) /var(tc,1); [Yc1_2,Xcf1_2,Acf1_2] = netc1( Xc1, Xci1, Aci1 ); Xc1_2 = cell(1,N); [Yc1_2,Xcf1_2,Acf1_2] = netc1( Xc1_2, Xcf1_2, Acf1_2 ); yc1_2 = cell2mat(Yc1_2);
clc % Code and error message: close all clear all % format long T = simplenar_dataset; [ I, N ] = size(T) % [ 1 100 ] d = 5 GEH2= ' WHY 5 ?' FD = 1:d; H = 10; % open net number one, input for closed net number % one and closed net number two neto1 = narnet( FD, H ); neto1.divideFcn = 'divideblock'; [ Xo1, Xoi1, Aoi1, To1] = preparets( neto1, {}, {}, T ); to = cell2mat( To1 ); % zto = zscore(to,1); varto1 = mean(var(to',1)) % 0.062747 % minmaxto = minmax([ to ; zto ]); rng( 'default' ) % [neto1,tro,Yo1,Eo1,Aof1,Xof1] = train( neto1, Xo1, To1, Xoi1, Aoi1 ); GEH3 = ' ERROR1: SWITCH Aof1 and Xof1' [neto1,tro,Yo1,Eo1,Xof1,Aof1] = train( neto1, Xo1, To1, Xoi1, Aoi1); %[Yo1,Xof1,Aof] = neto1( Xo1, Xoi1, Aoi1 ); GEH4 = 'ERROR: Aof1 not Aof' %Eo1 = gsubtract( To1, Yo1 ); GEH5 = ' COMMENT ABOVE 2 REDUNDANT STATEMENTS' NMSEo1 = mse( Eo1 ) /varto1 %1.6546e-09 GEH6 = ' ALWAYS MAKE SURE NMSEo1 IS ADEQUATE BEFORE CL' yo1 = cell2mat( Yo1 ); netc1 = closeloop(neto1); EWo1=getwb(neto1); EWc1=getwb(netc1); isequal( EWo1, EWc1) % 1 GEH7 = [ 'INCORRECT NOTATION: EW IS RESERVED FOR MSE' ... ' ERROR WEIGHTS. USE WBo1 AND WBc1 FOR WEIGHT '... ' BIAS VECTORS ' ] %netc1.divideFcn = 'divideblock'; GEH8 = 'ABOVE ASSIGNMENT IS UNNECESSARY' [ Xc1, Xci1, Aci1, Tc1, EWc1 ] = preparets( netc1, {}, {}, T, EWo1 ); % 1.232667933023756e-08 GEH9 = 'ERROR: SEE GEH0' GEH10 = 'WHAT IN THE WORLD IS 1.232667933023756e-08 ???'
GEH11 = 'DELETE ABOVE 3 STATEMENTS' isequal( Tc1, To1); tc = to; [netc1,troc1,Yc1,Ec1,Acf1,Xcf1] = train( netc1, Xc1, Tc1, Xci1, Aci1, EWc1); GEH12 = 'ERRORS: 1: SWITCH Acf1 AND Xcf1 2: REMOVE EWc1' GEH13 = 'I"LL STOP HERE'
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.