Clinton Mitchell asked . 2023-09-08

why is my ea not being recognized?

clc; clear all;
L = 1.25; E = 50000; I = 30000; w0 = 2.5;
syms x
f(x) = (w0/(120*E*I*L))*(-x^5+2*(L^2)*(x^3)-(L^4)*x);
df = diff(f,x); 
true = df(2); 
roots = solve(f==0, x);
true_roots = double(roots);
xl = 200;
xu = 300;
xr = (xl + xu) / 2;
es = 0.001;
xr_new(1) = xr;
if f(xl) * f(xu) < 0
    disp('The function changes sign within this bound')
    for i = 1:100
        val(i) = f(xl) * f(xr_new(i));
        if val(i) < 0
            disp('The root lies in the lower interval')
            xu = xr_new(i);
        elseif val(i) > 0
            disp('The root lies in the upper interval')
            xl = xr_new(i);
        else val = 0;
            fprintf('The approximate root of the function is %1.2f \n',xr_new(i))
            break
        end
        xr_new(i+1) = (xl + xu) / 2;
        ea = abs((xr_new(i+1) - xr_new(i))./xr_new(i+1));
        if ea < es
            break
        end
    end
else
    disp('The function does not change sign within this bound')
end

The function does not change sign within this bound

% Print the results
ea = ea*100;

Unrecognized function or variable 'ea'.

fprintf('The absolute approximate error is: %1.5f \n',ea)
n_iterations = i+1;
fprintf('The total number of iterations are: %d \n',n_iterations)
root = xr_new(1,end);
fprintf('The approximate root of the function is: %1.5f \n', root)
x1 = -1000 : 1000;
y1 = f(x1);
y = double(y1);
xmin = -1000; xmax = 1000; ymin = -0.5; ymax = 0.5;
plot(x1, y1)
hold on
plot(true_root,0,'mo','MarkerFaceColor','m')
set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on')
xlabel('x \rightarrow')
ylabel('\uparrow f(x)')
title('Graphical root')

 

matlab , Data Types , Numeric Types , Logical

Expert Answer

Prashant Kumar answered . 2024-12-21 00:46:55

There are a few inconsistencies.
 
(1) The simulation in [for ... end] loop never reached due to if condition f(xl)*f(xu) <0. The actual values of f(xl)*f(xu) were in sym and greater than 0. Therefore, by changing it to double and the if condition (f(xl)*f(xu)>), you will get the simulation results.
 
(2) The found true roots were in sym.
 
(3) Similarly, y1 = f(x1) was in sym that need to be numerical. Thus, double() is needed.
 
(4) if val = 0 is not correct that must be val == 0.
 
(5) It is better (must be) to use fplot() instead of plot to plot actual faction. By this way tru solutions can be shown explicitly - see figure (2).
 
Here is the corrected code:
 
 
clc; clearvars;
L = 1.25; E = 50000; I = 30000; w0 = 2.5;
syms f(x)
f(x) = (w0/(120*E*I*L))*(-x^5+2*(L^2)*(x^3)-(L^4)*x);
df = diff(f,x); 
true = double(df(2)); 
roots = vpasolve(f==0, x);
true_roots =double(roots(:));
xl = 200;
xu = 300;
xr = (xl + xu) / 2;
es = 0.001;
xr_new(1) = xr;
if double(f(xl)) * double(f(xu)) >0
    disp('The function changes sign within this bound')
    for i = 1:100
        val(i) = double(f(xl)) * double(f(xr_new(i)));
        if val(i) < 0
            disp('The root lies in the lower interval')
            xu = xr_new(i);
        elseif val(i) > 0
            disp('The root lies in the upper interval')
            xl = xr_new(i);
        else val == 0;
            fprintf('The approximate root of the function is %1.2f \n',xr_new(i))
            break
        end
        xr_new(i+1) = (xl + xu) / 2;
        ea = abs((xr_new(i+1) - xr_new(i))./xr_new(i+1));
        if ea < es
            break
        end
    end
else
    disp('The function does not change sign within this bound')
end
The function changes sign within this bound
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
The root lies in the upper interval
% Print the results
ea = ea*100;
fprintf('The absolute approximate error is: %1.5f \n',ea)
The absolute approximate error is: 0.06515 
n_iterations = i+1;
fprintf('The total number of iterations are: %d \n',n_iterations)
The total number of iterations are: 9 
root = xr_new(1,end);
fprintf('The approximate root of the function is: %1.5f \n', root)
The approximate root of the function is: 299.80469 
x1 = -1000 : 1000;
y1 = double(f(x1));
xmin = -1000; xmax = 1000; ymin = -0.5; ymax = 0.5;
figure(1)
plot(x1, y1)
hold on
plot(true_roots,0,'mo','MarkerFaceColor','m')
set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on')
xlabel('x \rightarrow')
ylabel('\uparrow f(x)')
title('Graphical root')
hold off

 

figure(2)
Fun = @(x) (w0/(120*E*I*L))*(-x.^5+2*(L^2)*(x.^3)-(L^4)*x);
fplot(Fun, [-1.5, 1.5], 'kx-')
hold on
plot(true_roots,0,'mo','MarkerFaceColor','m')
set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on')
xlabel('x \rightarrow')
ylabel('\uparrow f(x)')
title('Graphical root')

 


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.