clc; clear all; L = 1.25; E = 50000; I = 30000; w0 = 2.5; syms x f(x) = (w0/(120*E*I*L))*(-x^5+2*(L^2)*(x^3)-(L^4)*x); df = diff(f,x); true = df(2); roots = solve(f==0, x); true_roots = double(roots); xl = 200; xu = 300; xr = (xl + xu) / 2; es = 0.001; xr_new(1) = xr; if f(xl) * f(xu) < 0 disp('The function changes sign within this bound') for i = 1:100 val(i) = f(xl) * f(xr_new(i)); if val(i) < 0 disp('The root lies in the lower interval') xu = xr_new(i); elseif val(i) > 0 disp('The root lies in the upper interval') xl = xr_new(i); else val = 0; fprintf('The approximate root of the function is %1.2f \n',xr_new(i)) break end xr_new(i+1) = (xl + xu) / 2; ea = abs((xr_new(i+1) - xr_new(i))./xr_new(i+1)); if ea < es break end end else disp('The function does not change sign within this bound') end
The function does not change sign within this bound
% Print the results ea = ea*100;
Unrecognized function or variable 'ea'.
fprintf('The absolute approximate error is: %1.5f \n',ea) n_iterations = i+1; fprintf('The total number of iterations are: %d \n',n_iterations) root = xr_new(1,end); fprintf('The approximate root of the function is: %1.5f \n', root) x1 = -1000 : 1000; y1 = f(x1); y = double(y1); xmin = -1000; xmax = 1000; ymin = -0.5; ymax = 0.5; plot(x1, y1) hold on plot(true_root,0,'mo','MarkerFaceColor','m') set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on') xlabel('x \rightarrow') ylabel('\uparrow f(x)') title('Graphical root')
clc; clearvars; L = 1.25; E = 50000; I = 30000; w0 = 2.5; syms f(x) f(x) = (w0/(120*E*I*L))*(-x^5+2*(L^2)*(x^3)-(L^4)*x); df = diff(f,x); true = double(df(2)); roots = vpasolve(f==0, x); true_roots =double(roots(:)); xl = 200; xu = 300; xr = (xl + xu) / 2; es = 0.001; xr_new(1) = xr; if double(f(xl)) * double(f(xu)) >0 disp('The function changes sign within this bound') for i = 1:100 val(i) = double(f(xl)) * double(f(xr_new(i))); if val(i) < 0 disp('The root lies in the lower interval') xu = xr_new(i); elseif val(i) > 0 disp('The root lies in the upper interval') xl = xr_new(i); else val == 0; fprintf('The approximate root of the function is %1.2f \n',xr_new(i)) break end xr_new(i+1) = (xl + xu) / 2; ea = abs((xr_new(i+1) - xr_new(i))./xr_new(i+1)); if ea < es break end end else disp('The function does not change sign within this bound') end
The function changes sign within this bound The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval The root lies in the upper interval
% Print the results ea = ea*100; fprintf('The absolute approximate error is: %1.5f \n',ea)
The absolute approximate error is: 0.06515
n_iterations = i+1; fprintf('The total number of iterations are: %d \n',n_iterations)
The total number of iterations are: 9
root = xr_new(1,end); fprintf('The approximate root of the function is: %1.5f \n', root)
The approximate root of the function is: 299.80469
x1 = -1000 : 1000; y1 = double(f(x1)); xmin = -1000; xmax = 1000; ymin = -0.5; ymax = 0.5; figure(1) plot(x1, y1) hold on plot(true_roots,0,'mo','MarkerFaceColor','m') set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on') xlabel('x \rightarrow') ylabel('\uparrow f(x)') title('Graphical root') hold off
figure(2) Fun = @(x) (w0/(120*E*I*L))*(-x.^5+2*(L^2)*(x.^3)-(L^4)*x); fplot(Fun, [-1.5, 1.5], 'kx-') hold on plot(true_roots,0,'mo','MarkerFaceColor','m') set(gca,'XAxisLocation','origin','YAxisLocation','origin','XMinorTick','on') xlabel('x \rightarrow') ylabel('\uparrow f(x)') title('Graphical root')
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.