Prosenjit Paul asked . 2023-10-19

How to solve this '''Input to EIG must not contain NaN or Inf'''. problem

This is the code:
 
% 0: optimal BF
% 0q: optimal BF


clearvars;
close all;
filename='stat';
 seed=1970;
 rng(seed);
% rng(107);
cl=3;
ray=10;
deg=5;
path=cl*ray;
t=16;  %number of transmit antennas
r=16; %number of receive antennas
dt=1/2*2*pi; %normalized transmit antenna spacing
dr=1/2*2*pi; %normalized receive antenna spacing
phi_itr=100;mu_itr=100;  itr=phi_itr*mu_itr;
ULA=0; %1 for ULA and 0 for UPA

sector=4
if sector==1
    Ta=[0 2*pi];Te=[0 2*pi];
elseif sector==2
    Ta=[0 pi];
elseif sector==3
    Ta=[pi/6 5*pi/6];
elseif sector==4
    Ta=[0 2*pi];Te=[0 2*pi];
elseif sector==5
    Ta=[pi/3 2*pi/3]; Te=[pi/2, pi/2+pi/4];
end


num=1;
if num==1
    
   range=[0:3:15]; % range of angular spread in deg
  %range=3; % range of angular spread in deg
   disp('~~SNR vs angular spread');
   
elseif num==2
    range=1:8; % number of cluster
    disp('~~SNR vs number of cluster');
elseif num==3
    range=1:10; % number of ray per cluster
    disp('~~SNR vs number of rays (per cluster)');
elseif num==4
    range=2:7; %number of antenna
    disp('~~SNR vs number of antennas');
    
elseif num==5
    range=1; %
    disp('~~BER vs Pt/N0');
    snr_range=-25:2:5; 
    %snr_range=0:2:25; 
    qam=4;
    pt=10.^(snr_range/10);
    pt=pt*3/(qam-1);qam_const=1;
    ber0=zeros(size(snr_range));ber0q=ber0;ber1=ber0;ber1w=ber0;ber1q=ber0;ber_ay=ber0;ber_ay1=ber0;

elseif num==6
    range=0;
    disp('~~capacity~~');
    pt=10.^(range/10);
    cp0=zeros(1,itr);cp0q=cp0;
    cp1=cp0;cp1q=cp0;
    cp_ay=cp0;cp_ay1=cp0;

elseif num==7
    range=0;
        disp('~~transmission rate~~');
        snr_range=-25:2:5;
        pt=10.^(snr_range/10);
        Rb0=zeros(size(snr_range));Rb0q=Rb0;Rb1=Rb0;Rb2=Rb0;Rb1q=Rb0;Rb1s=Rb0; Rb_ay=Rb0;Rb_ay_bf=Rb0;
end   
Nth=8; Bf=4;  Nrf=1;
Rh=zeros(t,t);asnr0=zeros(size(range)); asnr0q=asnr0; asnr1=asnr0;asnr2=asnr0; asnr2q=asnr0; asnr10=asnr0; asnr1q=asnr0;asnr1a=asnr0;asnr1b=asnr0;

if ULA==1
    tW=1;
    tH=t;
else
  if ceil(sqrt(t))==sqrt(t)       
       tW=sqrt(t);
       tH=tW;
  else
        tW=sqrt(2*t);
        tH=tW/2;
  end  
end
if ceil(sqrt(r))==sqrt(r)        
       rW=sqrt(r);
       rH=rW;
else
        rW=sqrt(2*r);
        rH=rW/2;
end 


index=0;
for nn=1:length(range)
    
    if num==1   
       deg=range(nn);  % angular spread in deg  
       disp(strcat('~~~~~angular spread=',num2str(deg)));
    elseif num==2
        cl=range(nn); % number of cluster
    elseif num==3
        ray=range(nn); % number of ray per cluster
    elseif num==4
        t=2^range(nn); %number of antenna
        r=t;
        if ceil(sqrt(t))==sqrt(t)       
           tW=sqrt(t);tH=tW;
        else
           tW=sqrt(2*t);tH=tW/2;
        end      
        if ceil(sqrt(r))==sqrt(r)        
           rW=sqrt(r);rH=rW;
        else
            rW=sqrt(2*r);rH=rW/2;
        end 
    end   
        
        sigma_ta=deg*ones(1,cl)/180*pi;% standard deviation of phi_t
       sigma_te=sigma_ta;% standard deviation of phi_t   
       sigma_ra=sigma_ta;
       sigma_re=sigma_ta;
 
        sig_ta=deg*ones(1,path)/180*pi;
        sig_te=deg*ones(1,path)/180*pi;

          
    for n_mu=1:mu_itr
        
        mu_ta=Ta(1)+(Ta(2)-Ta(1))*rand(cl,1);
        mu_ra=2*pi*rand(cl,1);
        mu_te=Te(1)+(Te(2)-Te(1))*rand(cl,1);
        mu_re=2*pi*rand(cl,1);

 

       alpha=ones(1,path); 

 
 
       b=stat_Rh(sector,ULA,t,r,cl,ray,dt,tH,tW,alpha,mu_ta,mu_te,sig_ta,sig_te,Ta,Te);
 
 
 
 
 [V,D]=eig(b);
        [la1,i0]=max(diag(D));
        f1=V(:,i0);
        
 
        if ULA
            At=exp(1i*dt*(0:t-1)'*cos(mu_ta)');
            [f10,~]=eigs(At*At',1);
         end
            A=zeros(t,t);
            f2=zeros(t,1);
            for i_cl=1:cl
                temp_t=exp(1i*dt*(0:tH-1)'*cos(mu_te(i_cl)))*exp(1i*dt*(0:tW-1)*sin(mu_te(i_cl))*sin(mu_ta(i_cl)));
                temp_t=reshape(temp_t,t,1);
                f2=f2+temp_t;
                A=A+temp_t*temp_t';
            end
            [f10,~]=eigs(A,1);
            f2=f2/norm(f2);
    
       
    
        

        asnr1a(nn)=asnr1a(nn)+la1;
        Rh=zeros(t,t);
        for n_itr=1:phi_itr
            
            index=index+1;
            
            if sector==1
               [H, At, Ar]=stat_mmCh(ULA,dr,dt,t,r,tW,tH,rW,rH, path, cl,ray,mu_ta, mu_te, mu_ra, mu_re, sigma_ta,sigma_te,sigma_ra,sigma_re);
            else
               [H, At, Ar,spc_phi_ta,spc_phi_te]=stat_mmCh_sector(Ta,Te,ULA,dr,dt,t,r,tW,tH,rW,rH, path, cl,ray,mu_ta, mu_te, mu_ra, mu_re, sigma_ta,sigma_te,sigma_ra,sigma_re);
            end
            [V,D]=eig(H'*H);
            [la,i0]=max(diag(D));
            f0=V(:,i0);
            
            Rh=Rh+H'*H;           
            
            snr0=la;
%            f0q=exp(1i*round(angle(f0)/2/pi*Nth)*2*pi/Nth);
             f0=f0/max(abs(f0))*2;  f0q=q1(f0,Nth,Nth);
            g0q=H*f0q;
 %           g0q=exp(1i*round(angle(g0q)/2/pi*Nth)*2*pi/Nth);
            g0q=q1(g0q/max(abs(g0q))*2,Nth,Nth);
            
            
            f1q=q1(f1/max(abs(f1))*2,Nth,Nth);
%             f1q=exp(1i*round(angle(f1)/2/pi*Nth)*2*pi/Nth);
            g1q=H*f1q;
%             g1q=exp(1i*round(angle(g1q)/2/pi*Nth)*2*pi/Nth);
 
            g1q=q1(g1q/max(abs(g1q))*2,Nth,Nth);
            snr0q=norm(g0q'*H*f0q,2)^2/norm(g0q,2)^2/norm(f0q,2)^2; %using quanized optimal bf

            snr1=norm(H*f1,2)^2/norm(f1,2)^2;;
            snr1q=norm(g1q'*H*f1q,2)^2/norm(g1q,2)^2/norm(f1q,2)^2; %quantized

            snr10=norm(H*f10,2)^2;


            snr2=norm(H*f2,2)^2;
            

    
    if num<=4
        asnr0(nn)=asnr0(nn)+snr0;
        asnr0q(nn)=asnr0q(nn)+snr0q;
        asnr1(nn)=asnr1(nn)+snr1;
        asnr2(nn)=asnr2(nn)+snr2;
        asnr10(nn)=asnr10(nn)+snr10;
        asnr1q(nn)=asnr1q(nn)+snr1q;

    end
    
 

if num==5    
    
    [snr_ay,snr_ay1]= Ayach(1,t,dt,tH,tW,Nrf,H,ULA,At,Ar,f0,Ta,Te, 4, Nth,spc_phi_ta,spc_phi_te);
    [snr_ay_bf,snr_ay1]= Ayach(1,t,dt,tH,tW,Nrf,H,ULA,At,Ar,f0,Ta,Te, 6, Nth,spc_phi_ta,spc_phi_te);
    ber0=ber0+qam_const*Q_fun(sqrt(pt*snr0));
    ber0q=ber0q+qam_const*Q_fun(sqrt(pt*snr0q));
    ber1=ber1+qam_const*Q_fun(sqrt(pt*snr1));
     ber2=ber2+qam_const*Q_fun(sqrt(pt*snr2));
    %   ber1w=ber1w+qam_const*Q_fun(sqrt(pt*snr1w));
    ber1q=ber1q+qam_const*Q_fun(sqrt(pt*snr1q));
    %  ber1s=ber1s+qam_const*Q_fun(sqrt(pt*snr1s));
    %   ber1sq=ber1sq+qam_const*Q_fun(sqrt(pt*snr1sq));

    ber_ay=ber_ay+qam_const*Q_fun(sqrt(pt*snr_ay));
    ber_ay1=ber_ay1+qam_const*Q_fun(sqrt(pt*snr_ay1));
end
 
if num==6
    [snr_ay,snr_ay1]= Ayach(1,t,dt,tH,tW,Nrf,H,ULA,At,Ar,f0,Ta,Te, Bf, Nth,spc_phi_ta,spc_phi_te);

    cp0(index)=snr0;
    cp0q(index)=snr0q;
    cp1(index)=snr1;
    cp1q(index)=snr1q;
    cp_ay(index)=snr_ay;
    cp_ay1(index)=snr_ay1;

end
    
if num==7  
    [snr_ay,snr_ay1]= Ayach(1,t,dt,tH,tW,Nrf,H,ULA,At,Ar,f0,Ta,Te, Bf, Nth,spc_phi_ta,spc_phi_te);
    [snr_ay_bf,snr_ay1]= Ayach(1,t,dt,tH,tW,Nrf,H,ULA,At,Ar,f0,Ta,Te, Bf+1, Nth,spc_phi_ta,spc_phi_te);

    
    Rb0=Rb0+log2(1+pt*snr0);
    Rb0q=Rb0q+log2(1+pt*snr0q);
    Rb1=Rb1+log2(1+pt*snr1);
    Rb2=Rb2+log2(1+pt*snr2);
    Rb1q=Rb1q+log2(1+pt*snr1q);
    Rb_ay=Rb_ay+log2(1+pt*snr_ay);
    Rb_ay_bf=Rb_ay_bf+log2(1+pt*snr_ay_bf);
    Rb1s=Rb1s+log2(1+pt*la1);
 end





        end

        Rh=Rh/phi_itr;
        temp=eig(Rh);
        asnr1b(nn)=asnr1b(nn)+max(temp);

    end


    

end





%%
if num<=4
    asnr0=10*log10(asnr0/itr);
    asnr0q=10*log10(asnr0q/itr);
    asnr1=10*log10(asnr1/itr);
    asnr1q=10*log10(asnr1q/itr);
    asnr2=10*log10(asnr2/itr);
    asnr2q=10*log10(asnr2q/itr);
    asnr10=10*log10(asnr10/itr);
    asnr1b=10*log10(asnr1b/mu_itr);
    asnr1a=10*log10(asnr1a/mu_itr);
    
    
    %% spawc
    figure;
    
plot(range, asnr0,'k--o'); hold on;
%plot(range, asnr0q,'k->');
%plot(range, asnr1b,'b-s');
plot(range, asnr1,'r--d');
%plot(range, asnr1q,'r--*');
%plot(range, asnr2q,'g--+');



%legend('full CSI','full CSI,quantized','opt stat','stat','stat,quantized');

if num==1    
   xlabel('Angular spread (deg)');% range of angular spread in deg   
elseif num==2
    xlabel('Number of clusters');% number of cluster
elseif num==3
    xlabel('Number of rays per cluster'); % number of ray per cluster
else
    xlabel('Number of antennas'); %number of antenna
end   
%axis([0 15 18 25]); %for t=16
axis([0 15 22 32]); %t=64, r=16
%axis([0 15 28 35]); %t=r=64
ylabel('Average SNR (dB)');
grid on;
%%
figure;
    
plot(range, asnr0,'k'); hold on;
plot(range, asnr1,'g--d');
plot(range, asnr2,'r--+');
plot(range, asnr10,'g--o');
plot(range, asnr1a,'r-*');
plot(range, asnr1b,'b-s');
legend('optimal','statistical','multibeam','stat,zero var','theoretical','opt stat');

if num==1    
   xlabel('Angular spread (deg)');% range of angular spread in deg   
elseif num==2
    xlabel('Number of clusters');% number of cluster
elseif num==3
    xlabel('Number of rays per cluster'); % number of ray per cluster
else
    xlabel('Number of antennas'); %number of antenna
end   


ylabel('Average SNR (dB)');
grid on;

     temp=clock;
    st=strcat(num2str(temp(2)),'.',num2str(temp(3)),'.',num2str(temp(4)),'.',num2str(temp(5)));   
    st=strcat(st,',stat-new.m, BER, t=',num2str(t),',r=',num2str(r));
    st=strcat(st,',cl=',num2str(cl));
    st=strcat(st,',ray=',num2str(ray(1)));
    st=strcat(st,',deg=',num2str(sigma_ta(1)/pi*180));
    st1=strcat('Ta=',num2str(Ta/pi),'\pi');
    st1=strcat(st1,',Te=',num2str(Te/pi),'\pi');
 

    st1=strcat(st1,',mu_itr=',num2str(mu_itr),',phi_itr=',num2str(phi_itr));
   if ULA==1        
       st1=strcat(st1,',ULA');
    else
        st1=strcat(st1,',UPA');
   end
   st1=strcat(st1,',Bf=',num2str(Bf),',Nth=',num2str(Nth));
   title({st,st1});
    grid on

end


%%
if num==4
    figure;
    range=2.^range;
plot(range, asnr0,'k-.o'); hold on;
plot(range, asnr0q,'k->'); 
plot(range, asnr1,'r-.d');
plot(range, asnr1q,'r-*');
legend('FULL CSI','FULL CSI,quantized','stat','stat,quantized');
xlabel('Number of antennas'); 
ylabel('Average SNR (dB)');
grid on;

end


%%
if num==5
   ber0=ber0/itr; 
   ber0q=ber0q/itr; 
    ber1=ber1/itr;
    ber2=ber2/itr;
    ber1q=ber1q/itr;
    ber_ay=ber_ay/itr;
    ber_ay1=ber_ay1/itr;
  %%
  figure;
    semilogy(snr_range, ber0, 'k-');hold on;
    semilogy(snr_range, ber0q, 'k-*');
    semilogy(snr_range, ber1, 'r-s');
    semilogy(snr_range, ber1q, 'r-*');
    semilogy(snr_range, ber_ay, 'g-d');
    axis([min(snr_range) max(snr_range) 10^(-5) 1]);
    
    legend('0','0q','1','1q','ay');
     temp=clock;
    st=strcat(num2str(temp(2)),'.',num2str(temp(3)),'.',num2str(temp(4)),'.',num2str(temp(5)));   
    st=strcat(st,',stat-new.m, BER, t=',num2str(t),',r=',num2str(r));
    st=strcat(st,',cl=',num2str(cl));
    st=strcat(st,',ray=',num2str(ray(1)));
    st=strcat(st,',deg=',num2str(sigma_ta(1)/pi*180));
    st1=strcat('Ta=',num2str(Ta/pi),'\pi');
    st1=strcat(st1,',Te=',num2str(Te/pi),'\pi');
 

    st1=strcat(st1,',mu_itr=',num2str(mu_itr),',phi_itr=',num2str(phi_itr));
   if ULA==1        
       st1=strcat(st1,',ULA');
    else
        st1=strcat(st1,',UPA');
   end
   st1=strcat(st1,',Bf=',num2str(Bf),',Nth=',num2str(Nth));
   title({st,st1});
    grid on
    
    
end

%% plot cdf

if num==6

    cp0=log2(1+cp0*pt);
    cp0q=log2(1+cp0q*pt);
    cp1=log2(1+cp1*pt);
    cp1q=log2(1+cp1q*pt);
    cp_ay=log2(1+cp_ay*pt);
    cp_ay1=log2(1+cp_ay1*pt);
    
    [pdf0,x0]=hist(cp0,100);
    [pdf0q,x0q]=hist(cp0q,100);
    [pdf1,x1]=hist(cp1,100);
    [pdf1q,x1q]=hist(cp1q,100);
    
    [pdf_ay,x_ay]=hist(cp_ay,100);
    [pdf_ay1,x_ay1]=hist(cp_ay1,100);
    pdf0=pdf0/itr;
    pdf0q=pdf0q/itr;
    pdf1=pdf1/itr;
    pdf1q=pdf1q/itr;
    
    pdf_ay=pdf_ay/itr;
    pdf_ay1=pdf_ay1/itr;
    
    
    cdf0=zeros(size(pdf0));cdf0q=cdf0;cdf1=cdf0; cdf1q=cdf0; cdf_ay=cdf0;cdf_ay1=cdf0;
    cdf0(1)=pdf0(1);
    cdf0q(1)=pdf0q(1);
    cdf1(1)=pdf1(1);
    cdf1q(1)=pdf1q(1);
    cdf_ay(1)=pdf_ay(1);cdf_ay1(1)=pdf_ay1(1);
    for ii=2:100
        cdf0(ii)=cdf0(ii-1)+pdf0(ii-1);
        cdf0q(ii)=cdf0q(ii-1)+pdf0q(ii-1);
        cdf1(ii)=cdf1(ii-1)+pdf1(ii-1);
        cdf1q(ii)=cdf1q(ii-1)+pdf1q(ii-1);
        cdf_ay(ii)=cdf_ay(ii-1)+pdf_ay(ii-1);
        cdf_ay1(ii)=cdf_ay1(ii-1)+pdf_ay1(ii-1);
    end
    %%
    figure;
    
    plot(x0,cdf0,'k'); hold;
    plot(x0q,cdf0q,'k:');
    plot(x1,cdf1,'r');
    plot(x1q,cdf1q,'--');
    plot(x_ay,cdf_ay,'-.m');
    plot(x_ay1,cdf_ay1,'--g');
    legend('cdf0','cdf0q','cdf1','cdf1q','SPC, N_{rf}=1','SPC, N_{rf}=2','Location','NorthWest');
    
    temp=clock;
    st=strcat(num2str(temp(2)),'.',num2str(temp(3)),'.',num2str(temp(4)),'.',num2str(temp(5)));   
    st=strcat(st,filename,'cdf, t=',num2str(t),',r=',num2str(r));
    st=strcat(st,',cl=',num2str(cl));
   % st=strcat(st,',ray=',num2str(ray));
    st=strcat(st,',deg=',num2str(sigma_ta(1)/pi*180));
    st=strcat(st,',pt(dB)=',num2str(range));
    st=strcat(st,',Bf=',num2str(Bf));
    st=strcat(st,',Nth=',num2str(Nth));
    st=strcat(st,',Ta=',num2str(Ta/pi),'\pi');
    st=strcat(st,',Te=',num2str(Te/pi),'\pi');
    if ULA==1        
       st1=strcat('ULA,','itr=');
    else
        st1=strcat('UPA,','itr=');
    end

    st1=strcat(st1,num2str(itr));
    title({st,st1});    

    grid on
    axis([2 10 0 1.1]);
    grid on;
    
end
if num==7
    Rb0=Rb0/itr; 
    Rb0q=Rb0q/itr;
    Rb1s=Rb1s/itr;
    Rb1=Rb1/itr;
    Rb2=Rb2/itr;
    Rb1q=Rb1q/itr;
    Rb_ay=Rb_ay/itr;
    Rb_ay_bf=Rb_ay_bf/itr;
 
    %%
    figure;
    plot(snr_range, Rb0, 'k-.');hold on;
    plot(snr_range, Rb0q, 'k-*');
    plot(snr_range, Rb1, 'r-d');
    plot(snr_range, Rb2, 'r-+');
    plot(snr_range, Rb1q, 'r-s');
    plot(snr_range, Rb1s, 'b-x')
    plot(snr_range, Rb_ay, 'm->');

    legend('optimal','0q','1','2multibeam','1q','1s','ay');
    %axis([min(snr_range) max(snr_range) 10^(]);
    
     temp=clock;
    st=strcat(num2str(temp(2)),'.',num2str(temp(3)),'.',num2str(temp(4)),'.',num2str(temp(5)));   
    st=strcat(st,'stat-new.m, Rb, t=',num2str(t),',r=',num2str(r));
    st=strcat(st,',cl=',num2str(cl));
    st=strcat(st,',ray=',num2str(ray));
    st=strcat(st,',deg=',num2str(sigma_ta(1)/pi*180));
    if ULA==1        
       st1=strcat('ULA,','itr=');
    else
        st1=strcat('UPA,','itr=');
    end

    st1=strcat(st1,num2str(itr));
    title({st,st1});    
    grid on
    
     %%
    figure;
    plot(snr_range, Rb0, 'k-.o');hold on;
    plot(snr_range, Rb0q, 'k->');
plot(snr_range, Rb_ay_bf, 'm:o');   
    plot(snr_range, Rb1, 'r-.d');
    plot(snr_range, Rb1q, 'r-*');
        
     plot(snr_range, Rb_ay, 'b-+');
    legend('Full CSI','Full CSI, quantized','SPC, 10 bits','stat','stat, quantized','SPC, 8bits');
    axis([-20 0 1 10]) ;
        grid on
        ylabel('Transmission rate (bits)');
        xlabel('P_t/N_0');

end

 

Radar , Phased Array System Toolbox , Phased Array Design and Analysis

Expert Answer

Prashant Kumar answered . 2024-12-21 01:17:34

num=1;
if num==1
    
   range=[0:3:15]; % range of angular spread in deg

Therefore range will start with 0.

for nn=1:length(range)
    
    if num==1   
       deg=range(nn);  % angular spread in deg  

num is still 1, so the angular speed case applies. range(nn) will be accessed, and as indicated earlier that starts with 0. So deg will be assigned 0.

        sig_ta=deg*ones(1,path)/180*pi;
        sig_te=deg*ones(1,path)/180*pi;

with deg being 0, this makes sig_ta an sig_te all 0.

       b=stat_Rh(sector,ULA,t,r,cl,ray,dt,tH,tW,alpha,mu_ta,mu_te,sig_ta,sig_te,Ta,Te);
and there they are passed to stat_Rh.
Inside stat_Rh
 
temp=temp*exp_lapsec(-(m-i)*dt*sin(mute(ll))+(n-k)*dt*cos(mute(ll))*sin(muta(ll)),sig_te(ll),Te(1)-mute(ll),Te(2)-mute(ll));
    temp=temp*exp_lapsec((n-k)*dt*sin(mute(ll))*cos(muta(ll)),sig_ta(ll),Ta(1)-muta(ll),Ta(2)-muta(ll));
Because sig_te and sig_ta are all 0, then sig_te(ll) and sig_ta(ll) will be 0 in those two calls to exp_lapsec.
 
Inside exp_lapsec,
 
function y= exp_lapsec(c,s,tmin,tmax)

so those 0 will be received into the variable s

b0=s/sqrt(2);

Since s is 0, b0 will be 0.

if tmin>=0
    
    y=1/c0/(2*b0)/(1i*c-1/b0)*(exp((1i*c-1/b0)*tmax)-exp((1i*c-1/b0)*tmin));
    
elseif tmax<=0
    
    y=1/c0/(2*b0)/(1i*c+1/b0)*(exp((1i*c+1/b0)*tmax)-exp((1i*c+1/b0)*tmin));
    
else
    
    y=1/c0/(2*b0)*((1-exp((1i*c+1/b0)*tmin))/(1i*c+1/b0)+(exp((1i*c-1/b0)*tmax)-1)/(1i*c-1/b0));    
    
end
Notice that all three of those cases involve 1/b0. Even without knowing what tmax and tmin are, we can see that these calculations are going to involve working with infinities of different signs. That makes it likely that nan will result, because negative infinity plus positive infinity is nan.
 
All of your sig_ta and sig_te are 0, so all of your results from stat_Rh come out nan, at least for that round. You feed that into eig() and eig() complains about the nan.
 
To repair this, you need to ensure that your sig_ta and sig_te are not 0 for this situation.


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.