Sergio asked . 2024-07-17

How to use fminunc for a 2D function composed of two functions?

I have:
 
 
and I want to minimize it on the unit square without using differentials.
 
I use the following code,
 
close all; clear; clc;
options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');
xy_guess = [0,0];
[xy_opt,fval] = fminunc(@quadratic,xy_guess,options)
function f = quadratic(in)
x = in(1);
y = in(2);

f = -5.*x - 5.*y + 10.*x.^2  + 2.*x.*y
f =  1/200.*(-1000.*x - 1000.*y + 400.*x.*y + 1200.*y.^2 + 5.*cos(30.*x) + 4.*cos(80.*x.^2) + 5.*cos(30.*y) + 4.*cos(80.*y^2))

But declaring f twice does not work. How should I declare this double-function as an input for fminunc ?

Mathematics and Optimization , Optimization Toolbox , Optimization Results , Solver Outputs and Ite

Expert Answer

Prashant Kumar answered . 2024-09-16 10:09:58

You dont seem to have a double function.
 
So here is a code to solve your problem. You have local minimas so fmincon and brute force approach gives you different results, since brute force approach is a global optimization.
 
f = @(x) [x(1) x(2)]*[10 2;2 6]*[x(1);x(2)]-[5 5]*[x(1);x(2)]+(cos(30*x(1))+cos(30*x(2)))/40+(cos(80*x(1)^2)+cos(80*x(2)^2))/50;
options = optimoptions(@fmincon);
%options = optimoptions(@fmincon,'Display','iter','OptimalityTolerance',1e-12);
lb = [0 0];% lower bounds
ub = [1 1];% upper bounds
x0 = [.5 .5]; % initial guess
[xSol,fval,exitflag,output] = fmincon(f,x0,[],[],[],[],lb,ub,[],options); % solve optimization
Feasible point with lower objective function value found, but optimality criteria not satisfied. See output.bestfeasible..


Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
% brute force searching the entire space for min function value
x1 = 0:0.001:1;
x2 = 0:0.001:1;
[X1,X2] = meshgrid(x1,x2);
fValBrute = arrayfun(@(x1,x2)f([x1 x2]),X1,X2);
idxMin = find(fValBrute == min(fValBrute,[],'all')); % find minimum function value 
% plot
contourf(X1,X2,fValBrute,150)
hold on 
plot(xSol(1),xSol(2),'k*') % black star is the result of fmincon
plot(X1(idxMin),X2(idxMin),'rx') % red x is the brute force result
title({sprintf('Min function value found via fmincon: %.4f at [%.4f %.4f]',fval,xSol(1),xSol(2));
   sprintf('Min function value found via brute force: %.4f at [%.4f %.4f]',fValBrute(idxMin),X1(idxMin),X2(idxMin))})
hold off

 


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.