How can I tune parameters for TreeBagger model for classification, I followed the example:"Tune Random Forest Using Quantile Error and Bayesian Optimization", https://fr.mathworks.com/help/stats/tune-random-forest-using-quantile-error-and-bayesian-optimization.html I only changed "regression" with "classification". The following code generated multiple errors:
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,... 'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
errors:
Error using classreg.learning.internal.table2FitMatrix>resolveName (line 232) One or more 'ResponseName' parameter values are invalid. Error in classreg.learning.internal.table2FitMatrix (line 77) ResponseName = resolveName('ResponseName',ResponseName,FormulaResponseName,false,VarNames); Error in ClassificationTree.prepareData (line 557) [X,Y,vrange,wastable,varargin] = classreg.learning.internal.table2FitMatrix(X,Y,varargin{:},'OrdinalIsCategorical',false); Error in TreeBagger/init (line 1335) ClassificationTree.prepareData(x,y,... Error in TreeBagger (line 615) bagger = init(bagger,X,Y,makeArgs{:}); Error in oobErrRF2 (line 16) randomForest = TreeBagger(300,X,'MPG','Method','classification',... Error in @(params)oobErrRF2(params,trainingDataFeatures) Error in BayesianOptimization/callObjNormally (line 2184) Objective = this.ObjectiveFcn(conditionalizeX(this, X)); Error in BayesianOptimization/callObjFcn (line 2145) = callObjNormally(this, X); Error in BayesianOptimization/callObjFcn (line 2162) = callObjFcn(this, X); Error in BayesianOptimization/performFcnEval (line 2128) ObjectiveFcnObjectiveEvaluationTime, this] = callObjFcn(this, this.XNext); Error in BayesianOptimization/run (line 1836) this = performFcnEval(this); Error in BayesianOptimization (line 450) this = run(this); Error in bayesopt (line 287) Results = BayesianOptimization(Options);
would like to know if there is a way to use this method of tuning for classification. If not, how can I tune my parameters for a TreeBagger classifier.
The following works for me in R2018a. It predicts 'Cylinders' (3 classes) and it calls oobError to get the misclassification rate of the ensemble.
load carsmall Cylinders = categorical(Cylinders); Mfg = categorical(cellstr(Mfg)); Model_Year = categorical(Model_Year); X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,... Model_Year,Weight,MPG); rng('default'); % For reproducibility maxMinLS = 20; minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer'); numPTS = optimizableVariable('numPTS',[1,size(X,2)-1],'Type','integer'); hyperparametersRF = [minLS; numPTS]; results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,... 'AcquisitionFunctionName','expected-improvement-plus','Verbose',1); bestOOBErr = results.MinObjective bestHyperparameters = results.XAtMinObjective Mdl = TreeBagger(300,X,'Cylinders','Method','classification',... 'MinLeafSize',bestHyperparameters.minLS,... 'NumPredictorstoSample',bestHyperparameters.numPTS); function oobErr = oobErrRF(params,X) %oobErrRF Trains random forest and estimates out-of-bag quantile error % oobErr trains a random forest of 300 regression trees using the % predictor data in X and the parameter specification in params, and then % returns the out-of-bag quantile error based on the median. X is a table % and params is an array of OptimizableVariable objects corresponding to % the minimum leaf size and number of predictors to sample at each node. randomForest = TreeBagger(300,X,'Cylinders','Method','classification',... 'OOBPrediction','on','MinLeafSize',params.minLS,... 'NumPredictorstoSample',params.numPTS); oobErr = oobError(randomForest, 'Mode','ensemble'); end
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.