function [sys,x0,str,ts] = dynamic_model(t,x,u,flag) switch flag, case 0, [sys,x0,str,ts]=mdlInitializeSizes; case 1, sys=mdlDerivatives(t,x,u); case 3, sys=mdlOutputs(t,x,u); case { 2, 4, 9 }, sys = []; otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end function [sys,x0,str,ts]=mdlInitializeSizes(~,~,~,~) sizes = simsizes; sizes.NumContStates = 5; sizes.NumDiscStates = 0; sizes.NumOutputs = 18; sizes.NumInputs = 22; sizes.DirFeedthrough = 0; sizes.NumSampleTimes = 1; sys = simsizes(sizes); x0 = [20,0,0,0,0]; str = []; ts = [0 0]; function de=mdlDerivatives(~,x,u) m=1298.9; Iz=1627; lf=1; lr=1.454; br=1.436; bf=br; M=[m 0 0 0 0;0 m 0 0 0;0 0 Iz 0 0;0 0 0 1 0;0 0 0 0 1]; %matrice d'inertie C=[0 m*u(22) 0 0 0;-m*u(22) 0 0 0 0;0 0 0 0 0;0 0 0 cos(u(21)) -sin(u(21));0 0 0 sin(u(21)) cos(u(21))]; F=[u(9)*cos(u(1))-u(13)*sin(u(1))+u(10)*cos(u(2))-u(14)*sin(u(2))+u(11)*cos(u(3))-u(15)*sin(u(3))+u(12)*cos(u(4))-u(16)*sin(u(4));u(13)*cos(u(1))+u(9)*sin(u(1))+u(14)*cos(u(2))+u(10)*sin(u(2))+u(15)*cos(u(3))+u(11)*sin(u(3))+u(16)*cos(u(4))+u(12)*sin(u(4));u(9)*(lf*sin(u(1))+0.5*bf*cos(u(1)))+u(10)*(lr*sin(u(2))-0.5*bf*cos(u(2)))+u(11)*(-lr*sin(u(3))+0.5*br*cos(u(3)))+u(12)*(-lr*sin(u(4))-0.5*br*cos(u(4)))+u(13)*(lf*sin(u(1))-0.5*bf*cos(u(1)))+u(14)*(lf*sin(u(2))+0.5*bf*cos(u(2)))+u(15)*(-lr*sin(u(3))-0.5*br*cos(u(3)))+u(16)*(-lr*sin(u(4))+0.5*br*cos(u(4)));0;0]; de=(F-C*x)/M; function sys=mdlOutputs(~,~,u) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% non-linear dugoff tyre model %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cz=0.001; %vertical deflection rate of the tyre Cs=50000; epsilon=0.015; I=2.1; R=0.35; Ca=30000; m=1298.9; lf=1; lr=1.454; br=1.436; bf=br; mu=0.9; g=9.81; cons=m/(lr+lf); h=0.5; u1=(de(2)+lf*de(3))/(de(1)+0.5*bf*de(3)); u2=(de(2)+lf*de(3))/(de(1)-0.5*bf*de(3)); u3=(de(2)-lr*de(3))/(de(1)+0.5*br*de(3)); %% les ui représentent les rapports permettant de calculer les angles de dérives de chaque roue%% u4=(de(2)-lr*de(3))/(de(1)-0.5*br*de(3)); U=[u1 u2 u3 u4]; %%%vertical load/charge verticale: dde=-C*de/M; %dérivée de de! Fz1= cons*(0.5*g*lr-0.5*dde(1)*h-lr*h*dde(2)/bf); Fz2= cons*(0.5*g*lr-0.5*dde(1)*h+lr*h*dde(2)/bf); Fz3= cons*(0.5*g*lr+0.5*dde(1)*h-lr*h*dde(2)/bf); Fz4= cons*(0.5*g*lr+0.5*dde(1)*h+lr*h*dde(2)/bf); Fz=[Fz1 Fz2 Fz3 Fz4]; %%% velocity component in the wheel plane : is the longitunal velocity v1=(de(1)+0.5*bf*de(3))*cos(u(1))+(de(2)+lf*de(3))*sin(u(1)); v2=(de(1)-0.5*bf*de(3))*cos(u(2))+(de(2)+lf*de(3))*sin(u(2)); v3=(de(1)+0.5*br*de(3))*cos(u(3))+(de(2)-lr*de(3))*sin(u(3)); v4=(de(1)-0.5*br*de(3))*cos(u(4))+(de(2)-lr*de(3))*sin(u(4)); V=[v1 v2 v3 v4]; lamda=zeros(1,4);f=length(lamda); omega=zeros(1,4); alph=zeros(1,4); Re=zeros(1,4); S=zeros(1,4); dz=zeros(1,4); Fs=zeros(1,4); Ft=zeros(1,4); for i=1:4 dz(i)=-Cz*Fz(i)+ 0.33*R; Re(i)=R-dz(i)/3; omega(i)=(-R*u(i+16)+u(i+4))/I; S(i)=1+omega(i)*Re(i)/V(i); alph(i)=atan(U(i))-u(i); lamda(i)= mu*Fz(i)*(1-S(i))*(1-epsilon*V(i)*sqrt((S(i))^2 + (tan(alph(i)))^2))/(2*sqrt((Cs^2)*(S(i))^2 + (Ca^2)*(tan(alph(i))^2))); if lamda(i)<1 f(i)=lamda(i)*(2-lamda(i)); Fs(i)=Ca*f(i)*tan(alph(i))/(1-S(i)); Ft(i)=Cs*f(i)*S(i)/(1-S(i)); elseif lamda(i)>1 f(i)=1; Fs(i)=Ca*f(i)*tan(alph(i))/(1-S(i)); Ft(i)=Cs*f(i)*S(i)/(1-S(i)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sorties %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sys(1)=de(1); sys(2)=de(2); sys(3)=atan2(de(2),de(1)); sys(4)=de(4); sys(5)=de(5); sys(6)=Ft(1); sys(7)=Ft(2); sys(8)=Ft(3); sys(9)=Ft(4); sys(10)=Fs(1); sys(11)=Fs(2); sys(12)=Fs(3); sys(13)=Fs(4); sys(14)=de(3); sys(15)=Fz(1); sys(16)=Fz(2); sys(17)=Fz(3); sys(18)=Fz(4);
function [...] = dynamic_model(...) de = []; % Must be defined in the parent function's workspace! ... function de = mdlDerivatives(~,x,u) % nested function. ... de = ...; % define DE's value here. end function sys = mdlOutputs(...) ... de % afterwards access DE's value here. end ... end % Required at the end of each function.
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.