Star Strider asked . 2022-07-23

Which statistical test for change in a nonlinear regression model?

Hi guys,
 
I have a rather fundamental question regarding the analysis of my data involving nonlinear fitting and I hope it is appropriate to post it here. For the sake of brevity I will not provide the whole code and only summarize the essential steps, but of course I can add any details you request.
 
I have some data which represents some response to a stimulus as a function of the distance to the stimulation site. The data shows, as to be expected, a decay in the response variable, which may be best approximated by a sigmoidal fit. So I applied the BOLTZMANN equation to the data and let MATLAB predict confidence bounds for new observations:
 
 
% Define model function (BOLTZMANN);
f = @(beta0,conds)beta0(1) + ((beta0(2)-beta0(1)) ./ (1+exp((beta0(3) - conds) ./ beta0(4))));

% Find initialization parameters:
resp50 = (max(resp) + min(resp))/2;
x50 = 5000; %Educated guess

inidat = [0,max(resp),resp50,x50];

% Estimate the fitted function:
[beta,res,jac,covb] = nlinfit(conds',fliplr(resp),f,inidat);

% Fit the function:
xfit = linspace(min(conds),max(conds),100);
[yfit,delta,n,df,varpred] = nlpredci(f,xfit,beta,res,'Covar',covb,'PredOpt','observation'); %Function edited, see below
yfit = fliplr(yfit);
delta = fliplr(delta');
varpred = fliplr(varpred');
Behold the plotted result (Embedding this image did not work.)
I am now adressing the question, how far I can get off the reference site until responses are to be regarded non-maximum. I.e. up from which distance are my (predicted) responses signicantly different to the maximum a 0 mm? I did not find a pre-described solution to such a question, so I developed a little bit naively my own approach, and I would like to ask you to tell me if it is appropriate or if there is some superior method.
 
My idea was simply to run multiple pairwise t-tests given the statistics from the NLINFIT function (which I edited as to return sample size n, degrees of freedom v, and predicted variance varpred, so I would not have to do the calculations on my own). Thus, I iterate through the predictions unless the tested pair is significantly different:
alpha = 0.05;

for i=2:length(yfit)
     testdiff = yfit(1) - yfit(i);

     %Common MSE is mean of both estimated variances (s. ONLINESTATBOOK p.376):
     mse = (varpred(1) + varpred(i))/2;

     %Common SE:
     testse = sqrt(2*mse/n); %Correct?

     %Compute t-value:
     t = testdiff/testse;

     %Common df:
     testdf = (n-1) + (n-1); %Correct?

     p = tpdf(t,testdf);

     if p < (alpha/(i-1)) %With BONFERRONI correction (correct?)
        m = i;
        break;
     end
  end
As you can see, I also tried to add some BONFERRONI correction of the alpha-level to account for these multiple comparisions. I am aware, that the t-test I used may be inappropriate for correlated pairs (which is evidently the case).
According to my rule of thumb, I would expect a cut-off x-value somewhere were the confidence intervals of the fit do not intersect anymore. Surprisingly, I obtain a way earlier cut-off as you can see in the picture above.

data analysis , t-test , nonlinear regression , AI, Data Science, and Statistics , Statistics and Ma

Expert Answer

Prashant Kumar answered . 2024-12-21 17:29:37

I suggest doing paired t-tests ( ttest2 ) between your reference (at 0 mm) and data taken from stimuli at various distances, for instance 0 mm and 1 mm, 0 mm and 2 mm, etc. (My guess is that you would see significance at 10 to 15 mm, depending on whether your error bars represent standard errors or 95% confidence limits.) This is relatively common in the literature I am familiar with, and generally does not require the Bonferroni correction, because you are not also comparing 2 mm and 3 mm and others. (I also suggest consulting the statistics guidance for the journal you plan to submit your data to.)
 
The Boltzmann equation is interesting, but you might consider using a model more appropriate to the system you are measuring (unless you're doing the sort of physics the Boltzmann equation describes). I suspect a reviewer would want to know the reason you chose it and how it describes your experiment. You have not described the system you are investigating, but using a regression model fit may be redundant if you are only interested in the differences between the result of stimulation at various distances from the reference site.
 
I suggest that a regression model is most appropriate to a discussion of the possible mechanisms explaining the results you are getting. The model parameters can help explain the details of the system you are investigating.
 
The statistical analyses you use always depend on how you designed your experiment.


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.