Find the optimal value to maximize a function

Illustration
Hadeel Obaid - 2023-09-08T11:48:18+00:00
Question: Find the optimal value to maximize a function

Hi everyone..... could anyone help...... I need to find th optimal value of x0 and x1 to maximize R, where x1=d-x0..........the function MATLAB code:     close all; clear all; clc; % System parameters F = 10000; % Number of files S = 100; % SBS cache capacity (set to 100) M = 50; % Cash capacity fraction alpha = 2; % Path loss exponent for LOS link c = 3e8; % Light speed fr = 1e12; % Operating frequency B = 10e6; % System bandwidth epsilon = 0.8; % Skewness factor K = 0.0016; % Molecular absorption coefficient P_M = 10^(64/10); % Transmit power MBS P_S = 10^(30/10); % Transmit power SBS sigma = 10^(-90/10); % Noise power N_L = 512; N_M = 16; eta = 1; x2 =30; % RIS-MBS distance d_range = 1:1:40; R = zeros(size(d_range)); for i = 1:length(d_range) d = d_range(i); sum1 = 0; for f = 1:F sum1 = sum1 + f^(-epsilon); end sum2 = 0; for f = 1:M sum2 = sum2 + f^(-epsilon)/sum1; end sum3 = 0; for f = (M + 1):(M + (S - M) / eta) sum3 = sum3 + (f^(-epsilon)) / sum1; end sum3 = sum3 * eta; beta = (c/(4*pi*fr))^2; % Spreading loss index Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma); Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma); Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3)); R(i) = Rt; end figure plot(d_range, R, 'b^-') xlabel('SBS-RIS Distance, d') ylabel('Achievable Rate')  

Expert Answer

Profile picture of John Williams John Williams answered . 2025-11-20

Hi
 
seems to me that R curves goes up as x0 goes closer to zero (but not rqual to zero otherwise you get Inf values)
also all the small for loops to create the sum1, sum2,sum3 variables can be replaced with sum function directly
 
close all; clear all; clc;

x0_range  = [0.01 0.25 0.5 1];

% System parameters
F = 10000;    % Number of files
S = 100;     % SBS cache capacity (set to 100)
M = 50;      % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8;     % Light speed
fr = 1e12;  % Operating frequency
B = 10e6;    % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016;  % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30;      % RIS-MBS distance
d_range = 1:1:40;

R = zeros(numel(d_range),numel(x0_range));

for k = 1:numel(x0_range)
    x0 = x0_range(k);
    
    for i = 1:length(d_range)
        d = d_range(i);
        x1 = d-x0; % added line 

%         sum1 = 0;
%         for f = 1:F
%             sum1 = sum1 + f^(-epsilon);
%         end
        f = 1:F;
        sum1 = sum(f.^(-epsilon));
        
%         sum2 = 0;  
%         for f = 1:M
%             sum2 = sum2 + f^(-epsilon)/sum1;
%         end

        f = 1:M;
        sum2 = sum(f.^(-epsilon))/sum1;        

%         sum3 = 0;
%         for f = (M + 1):(M + (S - M) / eta)
%             sum3 = sum3 + (f^(-epsilon)) / sum1;
%         end
%         sum3 = sum3 * eta;
        
        f = (M + 1):(M + (S - M) / eta);
        sum3 = eta*sum(f.^(-epsilon))/sum1;        
        

        beta = (c/(4*pi*fr))^2;  % Spreading loss index
        Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
        Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
        Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
        R(i,k) = Rt;
        leg{k} = ['x0 = ' num2str(x0)];

    end

end

    plot(d_range, R, '^-')
    legend(leg)
    xlabel('SBS-RIS Distance, d')
    ylabel('Achievable Rate')  

 


Not satisfied with the answer ?? ASK NOW

Get a Free Consultation or a Sample Assignment Review!