This example shows how to design and implement an FIR filter using two command line functions, fir1
and designfilt
, and the interactive Filter Designer app.
Create a signal to use in the examples. The signal is a 100 Hz sine wave in additive N(0,1/4) white Gaussian noise. Set the random number generator to the default state for reproducible results.
rng default Fs = 1000; t = linspace(0,1,Fs); x = cos(2*pi*100*t)+0.5*randn(size(t));
The filter design is an FIR lowpass filter with order equal to 20 and a cutoff frequency of 150 Hz. Use a Kaiser window with length one sample greater than the filter order and β=3. See kaiser
for details on the Kaiser window.
Use fir1
to design the filter. fir1
requires normalized frequencies in the interval [0,1], where 1 corresponds to π rad/sample. To use fir1
, you must convert all frequency specifications to normalized frequencies.
Design the filter and view the filter's magnitude response.
fc = 150; Wn = (2/Fs)*fc; b = fir1(20,Wn,'low',kaiser(21,3)); fvtool(b,1,'Fs',Fs)
Apply the filter to the signal and plot the result for the first ten periods of the 100 Hz sinusoid.
y = filter(b,1,x); plot(t,x,t,y) xlim([0 0.1]) xlabel('Time (s)') ylabel('Amplitude') legend('Original Signal','Filtered Data')
Design the same filter using designfilt
. Set the filter response to 'lowpassfir'
and input the specifications as Name,Value
pairs. With designfilt
, you can specify your filter design in Hz.
Fs = 1000; Hd = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',150, ... 'DesignMethod','window','Window',{@kaiser,3},'SampleRate',Fs);
Filter the data and plot the result.
y1 = filter(Hd,x); plot(t,x,t,y1) xlim([0 0.1]) xlabel('Time (s)') ylabel('Amplitude') legend('Original Signal','Filtered Data')
This example shows how to design and implement a lowpass FIR filter using the window method with the interactive Filter Designer app.
Start the app by entering filterDesigner
at the command line.
Set the Response Type to Lowpass.
Set the Design Method to FIR and select the Window method.
Under Filter Order, select Specify order. Set the order to 20.
Under Frequency Specifications, set Units to Hz, Fs to 1000, and Fc to 150.
Click Design Filter.
Select File > Export... to export your FIR filter to the MATLAB® workspace as coefficients or a filter object. In this example, export the filter as an object. Specify the variable name as Hd
.
Click Export.
Filter the input signal in the command window with the exported filter object. Plot the result for the first ten periods of the 100 Hz sinusoid.
y2 = filter(Hd,x); plot(t,x,t,y2) xlim([0 0.1]) xlabel('Time (s)') ylabel('Amplitude') legend('Original Signal','Filtered Data')
Select File > Generate MATLAB Code > Filter Design Function to generate a MATLAB function to create a filter object using your specifications.
You can also use the interactive tool filterBuilder
to design your filter.
This example shows how to design a bandpass filter and filter data with minimum-order FIR equiripple and IIR Butterworth filters. You can model many real-world signals as a superposition of oscillating components, a low-frequency trend, and additive noise. For example, economic data often contain oscillations, which represent cycles superimposed on a slowly varying upward or downward trend. In addition, there is an additive noise component, which is a combination of measurement error and the inherent random fluctuations in the process.
In these examples, assume you sample some process every day for one year. Assume the process has oscillations on approximately one-week and one-month scales. In addition, there is a low-frequency upward trend in the data and additive N(0,1/4) white Gaussian noise.
Create the signal as a superposition of two sine waves with frequencies of 1/7 and 1/30 cycles/day. Add a low-frequency increasing trend term and N(0,1/4) white Gaussian noise. Reset the random number generator for reproducible results. The data is sampled at 1 sample/day. Plot the resulting signal and the power spectral density (PSD) estimate.
rng default Fs = 1; n = 1:365; x = cos(2*pi*(1/7)*n)+cos(2*pi*(1/30)*n-pi/4); trend = 3*sin(2*pi*(1/1480)*n); y = x+trend+0.5*randn(size(n)); [pxx,f] = periodogram(y,[],[],Fs); subplot(2,1,1) plot(n,y) xlim([1 365]) xlabel('Days') grid subplot(2,1,2) plot(f,10*log10(pxx)) xlabel('Cycles/day') ylabel('dB') grid
The low-frequency trend appears in the power spectral density estimate as increased low-frequency power. The low-frequency power appears approximately 10 dB above the oscillation at 1/30 cycles/day. Use this information in the specifications for the filter stopbands.
Design minimum-order FIR equiripple and IIR Butterworth filters with the following specifications: passband from [1/40,1/4] cycles/day and stopbands from [0,1/60] and [1/4,1/2] cycles/day. Set both stopband attenuations to 10 dB and the passband ripple tolerance to 1 dB.
Hd1 = designfilt('bandpassfir', ... 'StopbandFrequency1',1/60,'PassbandFrequency1',1/40, ... 'PassbandFrequency2',1/4 ,'StopbandFrequency2',1/2 , ... 'StopbandAttenuation1',10,'PassbandRipple',1, ... 'StopbandAttenuation2',10,'DesignMethod','equiripple','SampleRate',Fs); Hd2 = designfilt('bandpassiir', ... 'StopbandFrequency1',1/60,'PassbandFrequency1',1/40, ... 'PassbandFrequency2',1/4 ,'StopbandFrequency2',1/2 , ... 'StopbandAttenuation1',10,'PassbandRipple',1, ... 'StopbandAttenuation2',10,'DesignMethod','butter','SampleRate',Fs);
Compare the order of the FIR and IIR filters and the unwrapped phase responses.
fprintf('The order of the FIR filter is %d\n',filtord(Hd1))
The order of the FIR filter is 78
fprintf('The order of the IIR filter is %d\n',filtord(Hd2))
The order of the IIR filter is 8
[phifir,w] = phasez(Hd1,[],1); [phiiir,w] = phasez(Hd2,[],1); figure plot(w,unwrap(phifir)) hold on plot(w,unwrap(phiiir)) hold off xlabel('Cycles/Day') ylabel('Radians') legend('FIR Equiripple Filter','IIR Butterworth Filter') grid
The IIR filter has a much lower order that the FIR filter. However, the FIR filter has a linear phase response over the passband, while the IIR filter does not. The FIR filter delays all frequencies in the filter passband equally, while the IIR filter does not.
Additionally, the rate of change of the phase per unit of frequency is greater in the FIR filter than in the IIR filter.
Design a lowpass FIR equiripple filter for comparison. The lowpass filter specifications are: passband [0,1/4] cycles/day, stopband attenuation equal to 10 dB, and the passband ripple tolerance set to 1 dB.
Hdlow = designfilt('lowpassfir', ... 'PassbandFrequency',1/4,'StopbandFrequency',1/2, ... 'PassbandRipple',1,'StopbandAttenuation',10, ... 'DesignMethod','equiripple','SampleRate',1);
Filter the data with the bandpass and lowpass filters.
yfir = filter(Hd1,y); yiir = filter(Hd2,y); ylow = filter(Hdlow,y);
Plot the PSD estimate of the bandpass IIR filter output. You can replace yiir
with yfir
in the following code to view the PSD estimate of the FIR bandpass filter output.
[pxx,f] = periodogram(yiir,[],[],Fs); plot(f,10*log10(pxx)) xlabel('Cycles/day') ylabel('dB') grid
The PSD estimate shows the bandpass filter attenuates the low-frequency trend and high-frequency noise.
Plot the first 120 days of FIR and IIR filter output.
plot(n,yfir,n,yiir) axis([1 120 -2.8 2.8]) xlabel('Days') legend('FIR bandpass filter output','IIR bandpass filter output', ... 'Location','SouthEast')
The increased phase delay in the FIR filter is evident in the filter output.
Plot the lowpass FIR filter output superimposed on the superposition of the 7-day and 30-day cycles for comparison.
plot(n,x,n,ylow) xlim([1 365]) xlabel('Days') legend('7-day and 30-day cycles','FIR lowpass filter output', ... 'Location','NorthWest')
You can see in the preceding plot that the low-frequency trend is evident in the lowpass filter output. While the lowpass filter preserves the 7-day and 30-day cycles, the bandpass filters perform better in this example because the bandpass filters also remove the low-frequency trend.
This example shows how to perform zero-phase filtering.
Repeat the signal generation and lowpass filter design with fir1
and designfilt
. You do not have to execute the following code if you already have these variables in your workspace.
rng default Fs = 1000; t = linspace(0,1,Fs); x = cos(2*pi*100*t)+0.5*randn(size(t)); % Using fir1 fc = 150; Wn = (2/Fs)*fc; b = fir1(20,Wn,'low',kaiser(21,3)); % Using designfilt Hd = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',150, ... 'DesignMethod','window','Window',{@kaiser,3},'SampleRate',Fs);
Filter the data using filter
. Plot the first 100 points of the filter output along with a superimposed sinusoid with the same amplitude and initial phase as the input signal.
yout = filter(Hd,x); xin = cos(2*pi*100*t); plot(t,xin,t,yout) xlim([0 0.1]) xlabel('Time (s)') ylabel('Amplitude') legend('Input Sine Wave','Filtered Data') grid
Looking at the initial 0.01 seconds of the filtered data, you see that the output is delayed with respect to the input. The delay appears to be approximately 0.01 seconds, which is almost 1/2 the length of the FIR filter in samples (10×0.001).
This delay is due to the filter's phase response. The FIR filter in these examples is a type I linear-phase filter. The group delay of the filter is 10 samples.
Plot the group delay using fvtool
.
fvtool(Hd,'Analysis','grpdelay')
In many applications, phase distortion is acceptable. This is particularly true when phase response is linear. In other applications, it is desirable to have a filter with a zero-phase response. A zero-phase response is not technically possibly in a noncausal filter. However, you can implement zero-phase filtering using a causal filter with filtfilt
.
Filter the input signal using filtfilt
. Plot the responses to compare the filter outputs obtained with filter
and filtfilt
.
yzp = filtfilt(Hd,x); plot(t,xin,t,yout,t,yzp) xlim([0 0.1]) xlabel('Time (s)') ylabel('Amplitude') legend('100-Hz Sine Wave','Filtered Signal','Zero-phase Filtering',... 'Location','NorthEast')
In the preceding figure, you can see that the output of filtfilt
does not exhibit the delay due to the phase response of the FIR filter.
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.
Desktop Basics - MATLAB & Simulink
Array Indexing - MATLAB & Simulink
Workspace Variables - MATLAB & Simulink
Text and Characters - MATLAB & Simulink
Calling Functions - MATLAB & Simulink
2-D and 3-D Plots - MATLAB & Simulink
Programming and Scripts - MATLAB & Simulink
Help and Documentation - MATLAB & Simulink
Creating, Concatenating, and Expanding Matrices - MATLAB & Simulink
Removing Rows or Columns from a Matrix
Reshaping and Rearranging Arrays
Add Title and Axis Labels to Chart
Change Color Scheme Using a Colormap
How Surface Plot Data Relates to a Colormap
How Image Data Relates to a Colormap
Time-Domain Response Data and Plots
Time-Domain Responses of Discrete-Time Model
Time-Domain Responses of MIMO Model
Time-Domain Responses of Multiple Models
Introduction: PID Controller Design
Introduction: Root Locus Controller Design
Introduction: Frequency Domain Methods for Controller Design
DC Motor Speed: PID Controller Design
DC Motor Position: PID Controller Design
Cruise Control: PID Controller Design
Suspension: Root Locus Controller Design
Aircraft Pitch: Root Locus Controller Design
Inverted Pendulum: Root Locus Controller Design
Get Started with Deep Network Designer
Create Simple Image Classification Network Using Deep Network Designer
Build Networks with Deep Network Designer
Classify Image Using GoogLeNet
Classify Webcam Images Using Deep Learning
Transfer Learning with Deep Network Designer
Train Deep Learning Network to Classify New Images
Deep Learning Processor Customization and IP Generation
Prototype Deep Learning Networks on FPGA
Deep Learning Processor Architecture
Deep Learning INT8 Quantization
Quantization of Deep Neural Networks
Custom Processor Configuration Workflow
Estimate Performance of Deep Learning Network by Using Custom Processor Configuration
Preprocess Images for Deep Learning
Preprocess Volumes for Deep Learning
Transfer Learning Using AlexNet
Time Series Forecasting Using Deep Learning
Create Simple Sequence Classification Network Using Deep Network Designer
Classify Image Using Pretrained Network
Train Classification Models in Classification Learner App
Train Regression Models in Regression Learner App
Explore the Random Number Generation UI
Logistic regression create generalized linear regression model - MATLAB fitglm 2
Support Vector Machines for Binary Classification
Support Vector Machines for Binary Classification 2
Support Vector Machines for Binary Classification 3
Support Vector Machines for Binary Classification 4
Support Vector Machines for Binary Classification 5
Assess Neural Network Classifier Performance
Discriminant Analysis Classification
Train Generalized Additive Model for Binary Classification
Train Generalized Additive Model for Binary Classification 2
Classification Using Nearest Neighbors
Classification Using Nearest Neighbors 2
Classification Using Nearest Neighbors 3
Classification Using Nearest Neighbors 4
Classification Using Nearest Neighbors 5
Gaussian Process Regression Models
Gaussian Process Regression Models 2
Understanding Support Vector Machine Regression
Extract Voices from Music Signal
Align Signals with Different Start Times
Find a Signal in a Measurement
Extract Features of a Clock Signal
Filtering Data With Signal Processing Toolbox Software
Find Periodicity Using Frequency Analysis
Find and Track Ridges Using Reassigned Spectrogram
Classify ECG Signals Using Long Short-Term Memory Networks
Waveform Segmentation Using Deep Learning
Label Signal Attributes, Regions of Interest, and Points
Introduction to Streaming Signal Processing in MATLAB
Filter Frames of a Noisy Sine Wave Signal in MATLAB
Filter Frames of a Noisy Sine Wave Signal in Simulink
Lowpass Filter Design in MATLAB
Tunable Lowpass Filtering of Noisy Input in Simulink
Signal Processing Acceleration Through Code Generation
Signal Visualization and Measurements in MATLAB
Estimate the Power Spectrum in MATLAB
Design of Decimators and Interpolators
Multirate Filtering in MATLAB and Simulink