A typical workflow for inspecting and comparing signals using the Signal Analyzer app is:
Select Signals to Analyze — Select any signal available in the MATLAB® workspace. The app accepts numeric arrays and signals with inherent time information, such as MATLAB timetable
arrays, timeseries
objects, and labeledSignalSet
objects. See Data Types Supported by Signal Analyzer for more information.
Preprocess Signals — Lowpass, highpass, bandpass, or bandstop filter signals. Remove trends and compute signal envelopes. Smooth signals using moving averages, regression, Savitzky-Golay filters, or other methods. Change sample rates of signals or interpolate nonuniformly sampled signals onto uniform grids. Preprocess signals using your own custom functions. Generate MATLAB functions to automate preprocessing operations.
Explore Signals — Add time information to signals using sample rates, numeric vectors, duration
arrays, or MATLAB expressions. Plot, measure, and compare data, their spectra, their spectrograms, or their scalograms. Look for features and patterns in the time domain, in the frequency domain, and in the time-frequency domain. Compute persistence spectra to analyze sporadic signals and sharpen spectrogram estimates using reassignment. Extract regions of interest from signals.
Share Analysis — Copy displays from the app to the clipboard as images. Export signals to the MATLAB workspace or save them to MAT-files. Generate MATLAB scripts to automate the computation of power spectrum, spectrogram, or persistence spectrum estimates and the extraction of regions of interest. Save Signal Analyzer sessions to resume your analysis later or on another machine.
Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program. The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more audible. Convert the signal to a MATLAB® timetable.
whaleFile = fullfile(matlabroot,'examples','matlab','data','bluewhale.au'); [w,fs] = audioread(whaleFile); whale = timetable(seconds((0:length(w)-1)'/fs),w); % To hear, type soundsc(w,fs)
Open Signal Analyzer and drag the timetable to a display. Four features stand out from the noise. The first is known as a trill, and the other three are known as moans.
On the Display tab, click Spectrum to open a spectrum view and click Panner to activate the panner. Use the panner to create a zoom window with a width of about 2 seconds. Drag the zoom window so that it is centered on the trill. The spectrum shows a noticeable peak at around 900 Hz.
Isolate the single trill by highpass filtering. Right-click the signal in the Signal table and select Duplicate to create a copy of the whale song. Remove the original signal from the display by clearing the check box next to its name in the Signal table. On the Analyzer tab, click Preprocessing ? and select Highpass. Set the passband frequency to 925 Hz and the stopband attenuation at 80 dB. Use the default value for the steepness.
Clear the display and select the original signal. Extract the three moans to compare their spectra:
Center the panner zoom window on the first moan. The spectrum has eight clearly defined peaks, located very close to multiples of 170 Hz. Click Extract Signals ? and select Between Time Limits
.
Click Panner to hide the panner. Press the space bar to see the full signal. Click Zoom in X and zoom in on a 2-second interval of the time view centered on the second moan. The spectrum again has peaks at multiples of 170 Hz. Click Extract Signals ? and select Between Time Limits
.
Press the space bar to see the full signal. Click Data Cursors ? and select Two
. Place the time domain cursors in a 2-second interval around the third moan. Again, there are peaks at multiples of 170 Hz. Click Extract Signals ? and select Between Time Cursors
.
Plot the highpass-filtered signal and place the two data cursors at 1 second and 3.5 seconds. Extract the region containing the trill.
Remove the original signal from the display by clearing the check box next to its name in the Signal table. Display the three regions of interest you just extracted. Their spectra lie approximately on top of each other.
On the same display, plot the region of interest containing the trill that you extracted. The trill and moan spectra are noticeably different.
Click on Export on the Analyzer tab to export the four regions of interest in a MAT-file.
Matlabsolutions.com provides guaranteed satisfaction with a
commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain
experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support
to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been
empanelled after extensive research and quality check.
Matlabsolutions.com provides undivided attention to each Matlab
assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services
include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work
done at the best price in industry.
Desktop Basics - MATLAB & Simulink
Array Indexing - MATLAB & Simulink
Workspace Variables - MATLAB & Simulink
Text and Characters - MATLAB & Simulink
Calling Functions - MATLAB & Simulink
2-D and 3-D Plots - MATLAB & Simulink
Programming and Scripts - MATLAB & Simulink
Help and Documentation - MATLAB & Simulink
Creating, Concatenating, and Expanding Matrices - MATLAB & Simulink
Removing Rows or Columns from a Matrix
Reshaping and Rearranging Arrays
Add Title and Axis Labels to Chart
Change Color Scheme Using a Colormap
How Surface Plot Data Relates to a Colormap
How Image Data Relates to a Colormap
Time-Domain Response Data and Plots
Time-Domain Responses of Discrete-Time Model
Time-Domain Responses of MIMO Model
Time-Domain Responses of Multiple Models
Introduction: PID Controller Design
Introduction: Root Locus Controller Design
Introduction: Frequency Domain Methods for Controller Design
DC Motor Speed: PID Controller Design
DC Motor Position: PID Controller Design
Cruise Control: PID Controller Design
Suspension: Root Locus Controller Design
Aircraft Pitch: Root Locus Controller Design
Inverted Pendulum: Root Locus Controller Design
Get Started with Deep Network Designer
Create Simple Image Classification Network Using Deep Network Designer
Build Networks with Deep Network Designer
Classify Image Using GoogLeNet
Classify Webcam Images Using Deep Learning
Transfer Learning with Deep Network Designer
Train Deep Learning Network to Classify New Images
Deep Learning Processor Customization and IP Generation
Prototype Deep Learning Networks on FPGA
Deep Learning Processor Architecture
Deep Learning INT8 Quantization
Quantization of Deep Neural Networks
Custom Processor Configuration Workflow
Estimate Performance of Deep Learning Network by Using Custom Processor Configuration
Preprocess Images for Deep Learning
Preprocess Volumes for Deep Learning
Transfer Learning Using AlexNet
Time Series Forecasting Using Deep Learning
Create Simple Sequence Classification Network Using Deep Network Designer
Classify Image Using Pretrained Network
Train Classification Models in Classification Learner App
Train Regression Models in Regression Learner App
Explore the Random Number Generation UI
Logistic regression create generalized linear regression model - MATLAB fitglm 2
Support Vector Machines for Binary Classification
Support Vector Machines for Binary Classification 2
Support Vector Machines for Binary Classification 3
Support Vector Machines for Binary Classification 4
Support Vector Machines for Binary Classification 5
Assess Neural Network Classifier Performance
Discriminant Analysis Classification
Train Generalized Additive Model for Binary Classification
Train Generalized Additive Model for Binary Classification 2
Classification Using Nearest Neighbors
Classification Using Nearest Neighbors 2
Classification Using Nearest Neighbors 3
Classification Using Nearest Neighbors 4
Classification Using Nearest Neighbors 5
Gaussian Process Regression Models
Gaussian Process Regression Models 2
Understanding Support Vector Machine Regression
Extract Voices from Music Signal
Align Signals with Different Start Times
Find a Signal in a Measurement
Extract Features of a Clock Signal
Filtering Data With Signal Processing Toolbox Software
Find Periodicity Using Frequency Analysis
Find and Track Ridges Using Reassigned Spectrogram
Classify ECG Signals Using Long Short-Term Memory Networks
Waveform Segmentation Using Deep Learning
Label Signal Attributes, Regions of Interest, and Points
Introduction to Streaming Signal Processing in MATLAB
Filter Frames of a Noisy Sine Wave Signal in MATLAB
Filter Frames of a Noisy Sine Wave Signal in Simulink
Lowpass Filter Design in MATLAB
Tunable Lowpass Filtering of Noisy Input in Simulink
Signal Processing Acceleration Through Code Generation
Signal Visualization and Measurements in MATLAB
Estimate the Power Spectrum in MATLAB
Design of Decimators and Interpolators
Multirate Filtering in MATLAB and Simulink